Answer:
(3, -6)
General Formulas and Concepts:
<u>Pre-Algebra</u>
Order of Operations: BPEMDAS
- Brackets
- Parenthesis
- Exponents
- Multiplication
- Division
- Addition
- Subtraction
Equality Properties
- Multiplication Property of Equality
- Division Property of Equality
- Addition Property of Equality
- Subtraction Property of Equality<u>
</u>
<u>Algebra I</u>
- Coordinates (x, y)
- Terms/Coefficients
- Solving systems of equations using substitution/elimination
Step-by-step explanation:
<u>Step 1: Define Systems</u>
y = 4x - 18
y = -5x + 9
<u>Step 2: Solve for </u><em><u>x</u></em>
<em>Substitution</em>
- Substitute in <em>y</em> [2nd Equation]: 4x - 18 = -5x + 9
- [Addition Property of Equality] Add 5x on both sides: 9x - 18 = 9
- [Addition Property of Equality] Add 18 on both sides: 9x = 27
- [Division Property of Equality] Divide 9 on both sides: x = 3
<u>Step 3: Solve for </u><em><u>y</u></em>
- Substitute in <em>x</em> [1st Equation]: y = 4(3) - 18
- Multiply: y = 12 - 18
- Subtract: y = -6
Answer:
but u have only provided 5 pts first give 100 pts and I will help u.
Answer:
Las Vegas
Step-by-step explanation:
−2x + 3y + 5z = −21
−4z = 20
6x − 3y = 0
do -4z=20 first
divide both sides by -4 to get z by itself
-4z/-4=20/-4
z=-5
Use z=-5 into −2x + 3y + 5z = −21
-2x+3y+5(-5)=-21
-2x+3y-25=-21
move -25 to the other side
sign changes from -25 to +25
-2x+3y-25+25=-21+25
-2x+3y=4
6x-3y=0
find x by eliminating y
Add the equations together
-2x+6x+3y+(-3y)=4+0
-2x+6x+3y-3y=4
4x=4
Divide by 4 for both sides
4x/4=4/4
x=1
Use x=1 into 6x − 3y = 0
6(1)-3y=0
6-3y=0
Move 6 to the other side
6-6-3y=0-6
-3y=-6
Divide both sides by -3
-3y/-3=-6/-3
y=2
Answer:
(1, 2, -5)
Associative property works in addition and multiplication.
Associative property in Addition: (a + b)+ c = a + (b + c)
Associative property in Multiplication: (a x b) x c = a x (b x c)
Associative property in Subtraction: (a - b) - c is not equal to a - (b - c)
Associative property in Division: (a divided by b) divided by c is not equal to a divided by (b divided by c).
Thus, associative property is not true for all integers.