Answer: D
Step-by-step explanation:
Look at the exponents first and order them from least to greatest
In general, the volume

has total derivative

If the cylinder's height is kept constant, then

and we have

which is to say,

and

are directly proportional by a factor equivalent to the lateral surface area of the cylinder (

).
Meanwhile, if the cylinder's radius is kept fixed, then

since

. In other words,

and

are directly proportional by a factor of the surface area of the cylinder's circular face (

).
Finally, the general case (

and

not constant), you can see from the total derivative that

is affected by both

and

in combination.
Answer:

Step-by-step explanation:
![f(x)=4\sqrt{2x^3-1}=4\left(2x^3-1\right)^\frac{1}{2}\\\\f'(x)=4\cdot\dfrac{1}{2}(2x^3-1)^{-\frac{1}{2}}\cdot3\cdot2x^2=\dfrac{12x^2}{(2x^3-1)^\frac{1}{2}}=\dfrac{12x^2}{\sqrt{2x^3-1}}\\\\\text{used}\\\\\sqrt{a}=a^\frac{1}{2}\\\\\bigg[f\left(g(x)\right)\bigg]'=f'(g(x))\cdot g'(x)\\\\\bigg[nf(x)\bigg]'=nf'(x)\\\\(x^n)'=nx^{n-1}](https://tex.z-dn.net/?f=f%28x%29%3D4%5Csqrt%7B2x%5E3-1%7D%3D4%5Cleft%282x%5E3-1%5Cright%29%5E%5Cfrac%7B1%7D%7B2%7D%5C%5C%5C%5Cf%27%28x%29%3D4%5Ccdot%5Cdfrac%7B1%7D%7B2%7D%282x%5E3-1%29%5E%7B-%5Cfrac%7B1%7D%7B2%7D%7D%5Ccdot3%5Ccdot2x%5E2%3D%5Cdfrac%7B12x%5E2%7D%7B%282x%5E3-1%29%5E%5Cfrac%7B1%7D%7B2%7D%7D%3D%5Cdfrac%7B12x%5E2%7D%7B%5Csqrt%7B2x%5E3-1%7D%7D%5C%5C%5C%5C%5Ctext%7Bused%7D%5C%5C%5C%5C%5Csqrt%7Ba%7D%3Da%5E%5Cfrac%7B1%7D%7B2%7D%5C%5C%5C%5C%5Cbigg%5Bf%5Cleft%28g%28x%29%5Cright%29%5Cbigg%5D%27%3Df%27%28g%28x%29%29%5Ccdot%20g%27%28x%29%5C%5C%5C%5C%5Cbigg%5Bnf%28x%29%5Cbigg%5D%27%3Dnf%27%28x%29%5C%5C%5C%5C%28x%5En%29%27%3Dnx%5E%7Bn-1%7D)
Answer:
someoeneenennene willlll heelellelelleep yyouuouou
Step-by-step explanation:
stan kim namjoon
Answer:
2
Step-by-step explanation:
r(x) = 2 sqrt(x)
s(x) = sqrt(x)
r(x) / s(x) = 2 sqrt(x) / sqrt(x)
= 2