Answer:
C
Step-by-step explanation:
A
(m² - 3m + 2) / (m² - m)
we see due to a little bit of experience with expressions and multiplications of expressions that
(m² - 3m + 2) = (m - 2)(m - 1)
(m² - m) = m(m - 1)
so,
(m - 2)(m - 1) / (m(m - 1)) = (m - 2) / m
so, that's not it.
B
(m² - 2m + 1) / (m - 1)
we see again
(m² - 2m + 1) = (m - 1)(m - 1)
so,
(m - 1)(m - 1) / (m - 1) = m - 1
so, that's not it.
C
(m² - m - 2) / (m² - 1)
we see again
(m² - m - 2) = (m - 2)(m + 1)
and
(m² - 1) = (m + 1)(m - 1)
so,
(m - 2)(m + 1) / ((m + 1)(m - 1)) = (m - 2) / (m - 1)
yes, that is the solution.
D
(2m² - 4m) / (2(m - 2))
2m(m - 2) / (2(m - 2)) = 2m/2 = m
no, that is not a solution.
Answer:
m + p >= 100
m >= 40
p >= 10
Step-by-step explanation:
let m = number of mugs
let p = number of plates
200+50+4 I think is the answer
Answer:
It would be C.
Step-by-step explanation:
This is because they allow it to be 50 dollars and less, making it C.
Answer:
Standard Complex Form : 
Step-by-step explanation:
We want to rewrite this expression in standard complex form. Let's first evaluate cos(5π / 6). Remember that cos(x) = sin(π / 2 - x). Therefore,
cos(5π / 6) = sin(π / 2 - 5π / 6),
π / 2 - 5π / 6 = - π / 3,
sin(- π / 3) = - sin(π / 3)
And we also know that sin(π / 3) = √3 / 2. So - sin(π / 3) = - √3 / 2 = cos(5π / 6).
Now let's evaluate the sin(5π / 6). Similar to cos(x) = sin(π / 2 - x), sin(x) = cos(π / 2 - x). So, sin(5π / 6) = cos(- π / 3). Now let's further simplify from here,
cos(- π / 3) = cos(π / 3)
We know that cos(π / 3) = 1 / 2. So, sin(5π / 6) = 1 / 2
Through substitution we receive the expression 25( - √3 / 2 + i(1 / 2) ). Further simplification results in the following expression. <u>As you can see your solution is option a.</u>
