Answer: C. 1.4 10-11 N up
Explanation:
The magnetic force, F on a charge q moving with velocity v in a magnetic field B at an angle θ is given by:
F = q v B sin θ
Charge of proton, q = 1.6 × 10⁻¹⁹ C
Strength of magnetic field, B = 3.4 T pointing outwards
velocity of the proton, v = 2.5 × 10⁷ m/s towards left
Magnetic force is given by:
F = 1.6 × 10⁻¹⁹ C× 2.5 × 10⁷ m/s ×3.4 T× sin 90 = 13.6 × 10⁻¹² N = 1.4 × 10⁻¹¹ N up
The direction of the force is given by Lorentz Right hand rule. The fingers point magnetic field, the thumb points towards velocity, then the force on the proton is given by the direction perpendicular to the palm.
The magnetic field acts outwards with velocity of the proton towards left. The force would act perpendicular to the two -upwards.
Accuracy is a general concept while precision is more of a mathematical concept.
MARK ME BRAINLIEST PLEASE!!!!!
The total energy TE = mgh + 1/2 mU^2; where h = 20 m, g = 9.81 m/sec^2, and U = 10 mps. When the ball reaches max height H, all that TE will be potential energy PE = mgH = TE.
So there you are. TE = mgh + 1/2 mU^2 = mgH = TE from the conservation of energy. Solve for H.
1) H = (gh + 1/2 U^2)/g = h + U^2/2g = ? meters where everything on the RHS is given. You can do the math.
2) As the ball drops from H to h, it picks up KE as the potential energy mgH is converted when the potential energy is diminished to mgh, where h < H. So PE - pe = ke = mg(H - h) = 1/2 mv^2 so solve for v = sqrt(2g(H - h)) and, again, everything is given. You can do the math.
3) Same deal as 2) except now its V = sqrt(2gH) because all the PE = mgH = 1/2 mV^2 = KE when it is about to hit the ground. You can do the math.
Put vinegar in a water bottle with no water, fill a balloon with baking soda, without pouring the baking soda in the vinegar put the balloon on the water bottle, then lift it so the baking soda goes in the vinegar, this will blow up the balloon
Answer:
I₂ = 143.79
Explanation:
To solve this problem, work them in two parts. A first one where we look for the intensity of the incident light in the set and a second one where we silence the light transmuted by the other set,
Let's start with the set of three curling irons
Beautiful light falls on the first polarized is not polarized, therefore only half the radiation passes
I₁ = I₀ / 2
this light reaches the second polarized and must comply with the Mule law
I₂ = I₁ cos² tea
The angle between the first polarized and the second is Tea = 29.0º
I₂ = I / 2 cos² 29
The light that comes out of the third polarized is
I₃ = I₂ cos² tea
the angle between the third - second polarizer is
tea = 58-29
tea = 29th
I3 = (I₀ / 2 cos² 29) cos² 29
indicate the output intensity
I3 = 110
we clear
I₀ = 2I3 / cos4 29
I₀ = 2 110 / cos4 29
I₀ = 375.96 W / cm²
Now we have the incident intensity in the new set of three polarizers
back to the for the first polarizer
I₁ = I₀ / 2
when passing the second polarizer
I₂ = I1 cos² 29
I2 = IO /2 cos²29
let's calculate
I₂ = 375.96 / 2 cos² 29
I₂ = 143.79