Answer:
Espanol 7h2 that's c coupon
<h3><u>Answer;</u></h3>
Universe, galaxy, solar system, planet, moon
<h3><u>Explanation;</u></h3>
- <u>A galaxy</u>, such as our Milky Way Galaxy, is a collection of solar systems orbiting around a central core.
- <u>A solar system</u> consists of a star, normally the sun and all of its planets, asteroids, comets and other bodies.
- <u>A planet</u> is a nearly spherical body which is in orbit around the Sun. Planets are larger than moons.
- <u>Moons</u> are typically rocky bodies which are in orbit around planets.
Answer:
The angular displacement of the blade is 576,871.2 radians
Explanation:
Given;
angular speed of the Helicopters rotor blades, ω = 510 rpm (revolution per minute)
time of motion, t = 3 hours
The angular speed of the Helicopters rotor blades in radian per second is given as;

The angular displacement in radian is given as;
θ = ωt
where;
t is time in seconds
θ = (53.414)(3 x 60 x 60)\\
θ = 576,871.2 radians
Therefore, the angular displacement of the blade is 576,871.2 radians
When they say use energy, you want to use
Total energy = potential energy + kinetic energy = mgh + 1/2mv²
I assume you mean 200 g ball,
so, we know the total distance traveled is going to be 13 - 1.3 = 11.7 m
If the ball just makes it to the top ( 13 m ) , then the ball will stop moving and the kinetic energy will be 0,
therefore, the potential energy at the top will be the total energy of the system = mgh
from this, we say that mgh = 1/2mv² solve for v
<span>
v = sqrt (2gh) = 15.2 m/s </span>
Complete Question:
A 10 kg block is pulled across a horizontal surface by a rope that is oriented at 60° relative to the horizontal surface.
The tension in the rope is constant and equal to 40 N as the block is pulled. What is the instantaneous power (in W) supplied by the tension in the rope if the block when the block is 5 m away from its starting point? The coefficient of kinetic friction between the block and the floor is 0.2 and you may assume that the block starting at rest.
Answer:
Power = 54.07 W
Explanation:
Mass of the block = 10 kg
Angle made with the horizontal, θ = 60°
Distance covered, d = 5 m
Tension in the rope, T = 40 N
Coefficient of kinetic friction, 
Let the Normal reaction = N
The weight of the block acting downwards = mg
The vertical resolution of the 40 N force, 





Power, 
