2.56
it’s 2.56 because the d value
Answer:
The set of polynomial is Linearly Independent.
Step-by-step explanation:
Given - {f(x) =7 + x, g(x) = 7 +x^2, h(x)=7 - x + x^2} in P^2
To find - Test the set of polynomials for linear independence.
Definition used -
A set of n vectors of length n is linearly independent if the matrix with these vectors as columns has a non-zero determinant.
The set is dependent if the determinant is zero.
Solution -
Given that,
f(x) =7 + x,
g(x) = 7 +x^2,
h(x)=7 - x + x^2
Now,
We can also write them as
f(x) = 7 + 1.x + 0.x²
g(x) = 7 + 0.x + 1.x²
h(x) = 7 - 1.x + 1.x²
Now,
The coefficient matrix becomes
A = ![\left[\begin{array}{ccc}7&1&0\\7&0&1\\7&-1&1\end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D7%261%260%5C%5C7%260%261%5C%5C7%26-1%261%5Cend%7Barray%7D%5Cright%5D)
Now,
Det(A) = 7(0 + 1) - 1(7 - 7) + 0
= 7(1) - 1(0)
= 7 - 0 = 7
⇒Det(A) = 7 ≠ 0
As the determinant is non- zero ,
So, The set of polynomial is Linearly Independent.
<em><u>Step</u></em><em><u>•</u></em><em><u>BY</u></em><em><u>•</u></em><em><u>Step</u></em><em><u> </u></em><em><u>Explanation</u></em><em><u>~</u></em><em><u>|</u></em>
<em><u> </u></em><em><u>♡</u></em><em><u>♡</u></em><em><u>♡</u></em><em><u>♡</u></em><em><u>♡</u></em><em><u>♡</u></em><em><u>♡</u></em><em><u>♡</u></em><em><u>♡</u></em><em><u>♡</u></em><em><u>♡</u></em><em><u>♡</u></em><em><u>♡</u></em><em><u> </u></em><em><u> </u></em><em><u> </u></em><em><u> </u></em><em><u> </u></em>
y=1.50
x=0.50
¹
1.50
1.59
______+
3.00
0.50
_____+
<em>3.50</em>
<h2>
<em><u>Answer</u></em><em><u>:</u></em><em><u>♡</u></em><em><u>~</u></em></h2>
<em><u>3.50</u></em>
<em><u>HOPE</u></em><em><u> </u></em><em><u>IT</u></em><em><u> </u></em><em><u>HELPSS</u></em>
Step-by-step explanation:
x=y+9
substitute
3(y+9)+8y=-6
3y+27+8y= -6
13y = -6 -27
13y= -33
y = -33/13
x = -33/13 + 9