If it goes up 6.17 meters, then the displacement is 6.17 meters.
the force will be as you said mgh.
lets multiply that out
.058*9.8*6.17=3.507..
work=3.507*6.17=21.638..kg/meter
I think you need to increase the voltage or decrease it.
Hope this helps!
Answer:
-2.5m/s²
Explanation:
The acceleration of a body is giving by the rate of change of the body's velocity. It is given by
a = Δv / t ----------------(i)
Where;
a = acceleration (measured in m/s²)
Δv = change in velocity = final velocity - initial velocity (measure in m/s)
t = time taken for the change (measured in seconds(s))
From the question;
i. initial velocity = 5m/s
final velocity = 0 [since the body (ball) comes to rest]
Δv = 0 - 5 = -5m/s
ii. time taken = t = 2s
<em>Substitute these values into equation (i) as follows;</em>
a = (-5m/s) / (2s)
a = -2.5m/s²
Therefore, the acceleration of the ball is -2.5m/s²
NB: The negative sign shows that the ball was actually decelerating.
Answer:
Explanation:
Although there is absolutely NO regard for significant digits, I can help you with this, nonetheless.
The equation for Potential Energy is PE = mgh. We have everything but the height of the ball. We have to solve for that using a one-dimensional motion equation:
v² = v₀² + 2aΔx, where Δx is our displacement (the height we need for PE). Filling in and keeping in mind that at the max height of parabolic travel, the final velocity of the object is 0:
0 = (21.5)² + 2(-9.8)Δx and
0 = 462.25 - 19.6Δx and
-462.25 = -19.6Δx so
Δx = 23.58 m. Using this as the h in our PE equation:
PE = .19(9.8)(23.58) so
PE = 43.9 J, choice C.
<span>Greg is trying to push a box of books across the floor of his room. The box of books doesn't move because the forces on the box are ___To Heavy__. When his little brother walks in and starts pushing with him, the box begins to slide across the floor. His brother's pushing, combined with his, makes the forces on the box ___lighter_____.</span>