Magnitude of normal force acting on the block is 7 N
Explanation:
10N = 1.02kg
Mass of the block = m = 1.02 kg
Angle of incline Θ
= 30°
Normal force acting on the block = N
From the free body diagram,
N = mgCos Θ
N = (1.02)(9.81)Cos(30)
N = 8.66 N
Rounding off to nearest whole number,
N = 7 N
Magnitude of normal force acting on the block = 7 N
Answer:
19.2 m/s
Explanation:
The train is moving at 18 m/s and you are walking in the same direction (east) so the speeds are added
18 + 1.2 = 19.2
If you were walking backwards (west) your velocity with respect to the ground would be
18 - 1.2 = 16.8
The student's shoulder supports the weight of the bag.
<h3>What is the free body diagram?</h3>
Free-body diagrams are utilized to display the relative direction and strength of all forces that are being applied to an item in a certain scenario. A unique illustration of the geometric diagrams that were covered in a previous lesson is the free-body diagram. We will make use of these graphics throughout the entire study of physics.
A university student is carrying a backpack. One strap is hanging the rucksack immobile from one shoulder.
The weight of the backpack is balanced by the shoulder of the student.
The free-body diagram is attached below.
More about the free body diagram link is given below.
brainly.com/question/24087893
#SPJ4
Answer:
A.C. Generator
Explanation:
The device designed to convert chemical energy into kinetic energy is an A.C generator.
The generator uses fuel to cause the mechanical motion of the pistons in the device.
- Chemical energy is a form of energy found between the bonds of compounds and molecules.
- When the bonds are broken, energy is released.
- The heat energy produced drives pistons and cause mechanical motion of the body.
- This is a form of kinetic energy which causes the motion of a body.
Answer: 
Explanation:
Given
Mass 
Spring constant 
Compression in the spring 
When the mass leaves the spring, the elastic potential energy of spring is being converted into kinetic energy of mass i.e.

The kinetic energy of the mass is 1.102 J.