A. Increase Energy because simple machines are supposed to help humans use less energy and less force when doing a task that normally requires a lot of force and energy
<span>.Ask a Question
.Do Background Research.
.Construct a Hypothesis.
.Test Your Hypothesis by Doing an Experiment
.Analyze Your Data and Draw a Conclusion.
<span>.Communicate Your Results.</span></span>
Answer:
a) F = 2.25 10³ N, b) REPULSIVE.
Explanation:
a) The electric force is given by coulomb's law
F =
k q1q2 / r2
in this case nso indicate that the two charges have the same value
q₁ = q₂ = 2.5 10⁻⁶ C
Let's reduce the magnitudes to the SI system
r = 0.5 cm (1m / 100cm) = 5 10⁻³ m
let's calculate
F =
F = 2.25 10³ N
b) In electricity, electric charges of the same sign repel and those of the opposite sign attract
In this exercise, the balls are equal and are rubbed with the same material, for which it acquires charges of the same type, consequently, as the charges are of the same type, they indicate that the negative force is REPULSIVE.
Answer:
Minimum coefficient of kinetic friction between the surface and the block is
.
Explanation:
Given:
Mass of the block = M
Spring constant = k
Distance pulled = x
According to the question:
<em>We have to find the minimum co-efficient of kinetic friction between the surface and the block that will prevent the block from returning to its equilibrium with non-zero speed. </em>
So,
From the FBD we can say that:
⇒ Normal force,
<em>...equation(i)</em>
⇒ Elastic potential energy,
=
<em> ...equation (ii)</em>
⇒ Frictional force,
=
<em> ...equation (iii)</em>
⇒ Plugging (i) in (iii).
⇒
Now,
⇒ As we know that the energy lost due to friction is equivalent to PE .
⇒
<em>...considering PE as</em>
or
.
Arranging the equation.
⇒ 
⇒
<em>...eliminating x from both sides.</em>
⇒
<em>...dividing both sides wit Mg.</em>
Minimum coefficient of kinetic friction between the surface and the block is
.
Answer:
2.204x10^2 -2 = 0.02204 in scientific notation.