In order to make things easier to describe and explain, let's call
the resistance of each bulb 'R', and the battery voltage 'V'.
a). In series, the total resistance is 3R.
In parallel, the total resistance is R/3.
Changing from series to parallel, the total resistance of the circuit
decreases to 1/9 of its original value.
b). In series, the total current is V / (3R) .
In parallel, the total current is 3V / R .
Changing from series to parallel, the total current in the circuit
increases to 9 times its original value.
c). In series, the power dissipated by the circuit is
(V) · V/3R = V² / 3R .
In parallel, the power dissipated by the circuit is
(V) · 3V/R = 3V² / R .
Changing from series to parallel, the power dissipated by
the circuit (also the power delivered by the battery) increases
to 9 times its original value.
Answer:
12°F
Explanation:
Calculation for how much subcooling is there in the condenser
Since the CONDENSING TEMPERATURE for 417.4 psig discharge pressure is 120 degrees (120°) which means that the amount of subcooling that is there in the condenser will be calculated using this formula
Amount of Condenser subcooling= Condensing Temperature discharge pressure -Condenser outlet temperature
Let plug in the formula
Amount of Condenser subcooling=120°-108f
Amount of Condenser subcooling=12°F
Therefore the amount of subcooling that is there in the condenser will be 12°F
D. because the statue has a new chemical called patina. It is no longer copper.
Answer:
i = 0.477 10⁴ B
the current flows in the counterclockwise
Explanation:
For this exercise let's use the Ampere law
∫ B . ds = μ₀ I
Where the path is closed
Let's start by locating the current vines that are parallel to the z-axis, so it must be exterminated along the x-axis and as the specific direction is not indicated, suppose it extends along the y-axis.
From BiotSavart's law, the field must be perpendicular to the direction of the current, so the magnetic field must go in the x direction.
We apply the law of Ampere the segment parallel to the x-axis is the one that contributes to the integral, since the other two have an angle of 90º with the magnetic field
Segment on the y axis
L₀ = (y2-y1)
L₀ = 3-0 = 3 cm
Segment on the point x = 2 cm
L₁ = 3-0
L₁ = 3cm
B L = μ₀ I
B 2L = μ₀ I
i = 2 L B /μ₀
i= 2 0.03 / 4π 10⁻⁷ B
i = 4.77 10⁴ B
The current is perpendicular to the magnetic field whereby the current flows in the counterclockwise
C. Textiles
It was the first thing mechanized in the Industrial Revolution