The more energy orbits the radiation jumps the more energy it has. So if the frequency stays the same each time then the wavelength will get longer if there is more energy.
In this case the situation in which the radiation jumps the most energy orbits is when: the electron jumps from the fourth orbit to the first orbit. This will emit the longest wavelength
Answer:
I = 0.287 MR²
Explanation:
given,
height of the object = 3.5 m
initial velocity = 0 m/s
final velocity = 7.3 m/s
moment of inertia = ?
Using total conservation of mechanical energy
change in potential energy will be equal to change in KE (rotational) and KE(transnational)
PE = KE(transnational) + KE (rotational)

v = r ω




I = 0.287 MR²
"Free fall" means that gravity is the ONLY force acting on the object. If there's air resistance, then it isn't free-fall.
Objects that fall near earths surface are ALWAYS falling through air, unless they're inside some kind of a vacuum chamber with all the air removed from it.
Answer:

Explanation:
a = Orbital radius = 
T = Orbital period = 23.21 hours
G = Gravitational constant = 6.67 × 10⁻¹¹ m³/kgs²
From Kepler's third law we get

From the given data the mass of Saturn is 
<span>Chemical and kinetic energy...</span>