Answer:
A galaxy is a gravitationally bound system of stars, stellar remnants, interstellar gas, dust, and dark matter. The word galaxy is derived from the Greek galaxias, literally "milky", a reference to the Milky Way.
Explanation:
Answer:
the object will travel 0.66 meters before to stop.
Explanation:
Using the energy conservation theorem:
The work done by the friction force is given by:
so:
Answer:
Explanation:
a )
We shall apply the concept of impulse .
Impulse = force x time = change in momentum
= 5 x 4 = 2 ( V - 3 ) , where V is final velocity of the object
20 = 2V - 6
V = 13 m /s
b )
Impulse applied = - 7 x 4 = - 28 kg m/s ( negative as direction of force is opposite motion )
If v be the final velocity
2 x 3 - 28 = 2 v ( initial momentum - change in momentum = final momentum )
- 22 = 2v
v = - 11 m /s
object will move with 11 m /s in opposite direction .
Answer:
r₁/r₂ = 1/2 = 0.5
Explanation:
The resistance of a wire is given by the following formula:
R = ρL/A
where,
R = Resistance of wire
ρ = resistivity of the material of wire
L = Length of wire
A = Cross-sectional area of wire = πr²
r = radius of wire
Therefore,
R = ρL/πr²
<u>FOR WIRE A</u>:
R₁ = ρ₁L₁/πr₁² -------- equation 1
<u>FOR WIRE B</u>:
R₂ = ρ₂L₂/πr₂² -------- equation 2
It is given that resistance of wire A is four times greater than the resistance of wire B.
R₁ = 4 R₂
using values from equation 1 and equation 2:
ρ₁L₁/πr₁² = 4ρ₂L₂/πr₂²
since, the material and length of both wires are same.
ρ₁ = ρ₂ = ρ
L₁ = L₂ = L
Therefore,
ρL/πr₁² = 4ρL/πr₂²
1/r₁² = 4/r₂²
r₁²/r₂² = 1/4
taking square root on both sides:
<u>r₁/r₂ = 1/2 = 0.5</u>