Answer:
244mm
Explanation:
I₁ = 3.35A
I₂ = 6.99A
μ₀ = 4π*10^-7
force per unit length (F/L) = 6.03*10⁻⁵N/m
B = (μ₀ I₁ I₂ )/ 2πr .........equation i
B = F / L ..........equation ii
equating equation i & ii,
F / L = (μ₀ I₁ I₂ )/ 2πr
Note F/L = B = F
F = (μ₀ I₁ I₂ ) / 2πr
2πr*F = (μ₀ I₁ I₂ )
r = (μ₀ I₁ I₂ ) / 2πF
r = (4π*10⁻⁷ * 3.35 * 6.99) / 2π * 6.03*10⁻⁵
r = 1.4713*10⁻⁵ / 6.03*10⁻⁵
r = 0.244m = 244mm
The distance between the wires is 244m
Answer:
d = 68.5 x 10⁻⁶ m = 68.5 μm
Explanation:
The complete question is as follows:
An optical engineer needs to ensure that the bright fringes from a double-slit are 15.7 mm apart on a detector that is 1.70m from the slits. If the slits are illuminated with coherent light of wavelength 633 nm, how far apart should the slits be?
The answer can be given by using the formula derived from Young's Double Slit Experiment:

where,
d = slit separation = ?
λ = wavelength = 633 nm = 6.33 x 10⁻⁷ m
L = distance from screen (detector) = 1.7 m
y = distance between bright fringes = 15.7 mm = 0.0157 m
Therefore,

<u>d = 68.5 x 10⁻⁶ m = 68.5 μm</u>
Answer:
The combination of elements most likely to comprise the circuit are resistor, inductor and capacitor
Explanation:
The impedance of an LCR circuit shown as
Z = √R² + (X↓l - X↓c)²
Z = √R² + (2π∨L - 1/2π∨c)²
Variation of Z with respect to υ is shown in the figure.
As υ increases, Z decreases and so the current increases.
At υ = υ↓r
Z is minimum, current is maximum. Beyond
υ = υ↓r
Z increases and so current decreases.
so the combination of circuit elements that is most suitable to comprise
the circuit is R, L and C.
To learn more about these circuits
brainly.com/question/13140756
#SPJ4
Answer:

Explanation:
The artificial gravity generated by the rotating space station is the same centripetal acceleration due to the rotational motion of the station, which is given by:

Here, r is the radius and v is the tangential speed, which is given by:

Here
is the angular velocity, we replace (2) in (1):

Recall that
.
Solving for
:

The ball only accelerates during the brief time that the club is in contact
with it. After it leaves the club face, it takes off at a constant speed.
If it accelerates at 20 m/s² during the hit, then
Force = (mass) x (acceleration) = (0.2kg) x (20 m/s²) = <em>4 newtons</em> .