Answer:
The sum of all forces for the two objects with force of friction F and tension T are:
(i) m₁a₁ = F
(ii) m₂a₂ = T - F
1) no sliding infers: a₁ = a₂= a
The two equations become:
m₂a = T - m₁a
Solving for a:
a = T / (m₁+m₂) = 2.1 m/s²
2) Using equation(i):
F = m₁a = 51.1 N
3) The maximum friction is given by:
F = μsm₁g
Using equation(i) to find a₁ = a₂ = a:
a₁ = μs*g
Using equation(ii)
T = m₁μsg + m₂μsg = (m₁ + m₂)μsg = 851.6 N
4) The kinetic friction is given by: F = μkm₁g
Using equation (i) and the kinetic friction:
a₁ = μkg = 6.1 m/s²
5) Using equation(ii) and the kinetic friction:
m₂a₂ = T - μkm₁g
a₂ = (T - μkm₁g)/m₂ = 12.1 m/s²
Answer:
(a) ω = 1.57 rad/s
(b) ac = 4.92 m/s²
(c) μs = 0.5
Explanation:
(a)
The angular speed of the merry go-round can be found as follows:
ω = 2πf
where,
ω = angular speed = ?
f = frequency = 0.25 rev/s
Therefore,
ω = (2π)(0.25 rev/s)
<u>ω = 1.57 rad/s
</u>
(b)
The centripetal acceleration can be found as:
ac = v²/R
but,
v = Rω
Therefore,
ac = (Rω)²/R
ac = Rω²
therefore,
ac = (2 m)(1.57 rad/s)²
<u>ac = 4.92 m/s²
</u>
(c)
In order to avoid slipping the centripetal force must not exceed the frictional force between shoes and floor:
Centripetal Force = Frictional Force
m*ac = μs*R = μs*W
m*ac = μs*mg
ac = μs*g
μs = ac/g
μs = (4.92 m/s²)/(9.8 m/s²)
<u>μs = 0.5</u>
The bacteria that doesn’t live in extreme conditions is Eubacteria
<span>A capacitor with a very large capacitance is in series with a capacitor
that has a very small capacitance.
The capacitance of the series combination is slightly smaller than the
capacitance of the small capacitor. (choice-C)
The capacitance of a series combination is
1 / (1/A + 1/B + 1/C + 1/D + .....) .
If you wisk, fold, knead, and mash that expression for a while,
you find that for only two capacitors in series, (or 2 resistors or
two inductors in parallel), the combination is
(product of the 2 individuals) / (sum of the individuals) .
In this problem, we have a humongous one and a tiny one.
Let's call them 1000 and 1 .
Then the series combination is
(1000 x 1) / (1000 + 1)
= (1000) / (1001)
= 0.999 000 999 . . .
which is smaller than the smaller individual.
It'll always be that way. </span>