Answer:
Noise making has led to loss on hearing.
Explanation:
Supposing you like engaging in parties because of the noise of the sound system it can cause loss on hearing if continued for long
Answer:
K = 1.29eV
Explanation:
In order to calculate the kinetic energy of the proton you first take into account the uncertainty principle, which is given by:
(1)
Δx : uncertainty of position = 2.0pm = 2.0*10^-12m
Δp: uncertainty of momentum = ?
h: Planck's constant = 6.626*10^-34 J.s
You calculate the minimum possible value of Δp from the equation (1):

The minimum kinetic energy is calculated by using the following formula:
(2)
m: mass of the proton = 1.67*10^{-27}kg

in eV you have:

The kinetic energy of the proton is 1.29eV
Answer:
the coin does not slide off
Explanation:
mass (m) = 5 g = 0.005 kg
distance (r) = 15 cm = 0.15 m
static coefficient of friction (μs) = 0.8
kinetic coefficient of friction (μk) = 0.5
speed (f) = 60 rpm
acceleration due to gravity (g) = 9.8 m/s^{2}
lets first find the angular speed of the table
ω = 2πf
ω = 2 x π x 60 x 
ω = 6.3 s^{-1]
Now lets find the maximum static force between the coin and the table so we can get the maximum velocity the coin can handle without sliding
static force (Fs) = ma
static force (Fs) = μs x Fn = μs x m x g
Fs = 0.8 x 0.005 x 9.8 = 0.0392 N
Fs = ma
0.0392 = 0.005 x a
a = 7.84 m/s^{2}
= a x r
= 7.84 x 0.15
Vmax = 1.08 m/s
ωmax = 
ωmax =
= 7.2 s^{-1}
now that we have the maximum angular acceleration of the table, we can calculate its maximum speed in rpm
Fmax = 
Fmax =
= 68.7 rpm
since the table is rotating at a speed less than the maximum speed that the static friction can hold coin on the table with, the coin would not slide off.
C) a substance that flows
The speed of light in glass is slower than the speed of light through space.