1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
polet [3.4K]
4 years ago
15

What are the effects of noise?​

Physics
1 answer:
slega [8]4 years ago
6 0

Answer:

Noise making has led to loss on hearing.

Explanation:

Supposing you like engaging in parties because of the noise of the sound system it can cause loss on hearing if continued for long

You might be interested in
Without inertia, how would an object that is experiencing a centripetal force behave?
nikitadnepr [17]
The correct option is this: IT WOULD MOVE IN A CURVED CIRCULAR PATH.
Objects that are travelling in circular paths change directions all the time as they move round the circle, but they are prevented from moving off in a straight line by centripetal force. The centripetal force keeps pulling the objects towards the center of the circle. <span />
8 0
3 years ago
Read 2 more answers
How much negative charge has been removed from a positively charged electroscope if it has a charge of 7.5×10^-11
vova2212 [387]

I think 4.69 x 108 charges have been removed

5 0
3 years ago
At a constant temperature, the volume of a gas doubles when the pressure is reduced to half of its original value. This is a sta
djyliett [7]

Answer: Boyle’s law

Explanation:

Boyle's Law: This law states that pressure is inversely proportional to the volume of the gas at constant temperature and number of moles.

P\propto \frac{1}{V}     (At constant temperature and number of moles)

As pressure is decreased to half, the volume is increased to doubled.

Charles' Law: This law states that volume is directly proportional to the temperature of the gas at constant pressure and number of moles.

V\propto T     (At constant pressure and number of moles)

Gay-Lussac's Law: This law states that pressure is directly proportional to the temperature of the gas at constant volume and number of moles.

P\propto T     (At constant volume and number of moles)

Combined gas Law: combining the three laws:

PV\propto T  

6 0
4 years ago
Read 2 more answers
what is the displacement for a driver who travels 10 km to get to a point that is 4 km from his starting point​
Cloud [144]

Answer:

4km

Explanation:

displacement is how far something has moved from its starting point

8 0
3 years ago
What is the importance of the x- y- Cartesian coordinate system in motion of an object in two dimensions?
ArbitrLikvidat [17]

Answer:

To have a constant velocity, an object must have a constant speed in a constant direction. Constant direction constrains the object to motion in a straight path thus, a constant velocity means motion in a straight line at a constant speed.

Explanation:

Velocity is defined as the rate of change of position with respect to time, which may also be referred to as the instantaneous velocity to emphasize the distinction from the average velocity. In some applications the "average velocity" of an object might be needed, that is to say, the constant velocity that would provide the same resultant displacement as a variable velocity in the same time interval, v(t), over some time period Δt. Average velocity can be calculated as:

{\displaystyle {\boldsymbol {\bar {v}}}={\frac {\Delta {\boldsymbol {x}}}{\Delta {\mathit {t}}}}.}{\boldsymbol {\bar {v}}}={\frac {\Delta {\boldsymbol {x}}}{\Delta {\mathit {t}}}}.

The average velocity is always less than or equal to the average speed of an object.

In terms of a displacement-time (x vs. t) graph, the instantaneous velocity (or, simply, velocity) can be thought of as the slope of the tangent line to the curve at any point, and the average velocity as the slope of the secant line between two points with t coordinates equal to the boundaries of the time period for the average velocity.

{\displaystyle {\boldsymbol {\bar {v}}}={1 \over t_{1}-t_{0}}\int _{t_{0}}^{t_{1}}{\boldsymbol {v}}(t)\ dt,}{\boldsymbol {\bar {v}}}={1 \over t_{1}-t_{0}}\int _{t_{0}}^{t_{1}}{\boldsymbol {v}}(t)\ dt,

where we may identify

{\displaystyle \Delta {\boldsymbol {x}}=\int _{t_{0}}^{t_{1}}{\boldsymbol {v}}(t)\ dt}\Delta {\boldsymbol {x}}=\int _{t_{0}}^{t_{1}}{\boldsymbol {v}}(t)\ dt

and

{\displaystyle \Delta t=t_{1}-t_{0}.}\Delta t=t_{1}-t_{0}.

Instantaneous velocity

{\displaystyle {\boldsymbol {v}}=\lim _{{\Delta t}\to 0}{\frac {\Delta {\boldsymbol {x}}}{\Delta t}}={\frac {d{\boldsymbol {x}}}{d{\mathit {t}}}}.}{\boldsymbol {v}}=\lim _{{\Delta t}\to 0}{\frac {\Delta {\boldsymbol {x}}}{\Delta t}}={\frac {d{\boldsymbol {x}}}{d{\mathit {t}}}}.

From this derivative equation, in the one-dimensional case it can be seen that the area under a velocity vs. time (v vs. t graph) is the displacement, x. In calculus terms, the integral of the velocity function v(t) is the displacement function x(t).

{\displaystyle {\boldsymbol {x}}=\int {\boldsymbol {v}}\ d{\mathit {t}}.}{\displaystyle {\boldsymbol {x}}=\int {\boldsymbol {v}}\ d{\mathit {t}}.}

Since the derivative of the position with respect to time gives the change in position (in metres) divided by the change in time (in seconds), velocity is measured in metres per second (m/s). Although the concept of an instantaneous velocity might at first seem counter-intuitive, it may be thought of as the velocity that the object would continue to travel at if it stopped accelerating at that moment.

Relationship to acceleration

Although velocity is defined as the rate of change of position,

{\displaystyle {\boldsymbol {a}}={\frac {d{\boldsymbol {v}}}{d{\mathit {t}}}}.}{\boldsymbol {a}}={\frac {d{\boldsymbol {v}}}{d{\mathit {t}}}}.

From there, we can obtain an expression for velocity as the area under an a(t) acceleration vs. time graph. As above, this is done using the concept of the integral:

{\displaystyle {\boldsymbol {v}}=\int {\boldsymbol {a}}\ d{\mathit {t}}.}{\displaystyle {\boldsymbol {v}}=\int {\boldsymbol {a}}\ d{\mathit {t}}.}

Constant acceleration

{\displaystyle {\boldsymbol {v}}={\boldsymbol {u}}+{\boldsymbol {a}}t}{\boldsymbol {v}}={\boldsymbol {u}}+{\boldsymbol {a}}t

with v as the velocity at time t and u as the velocity at time t = 0. By combining this equation with the suvat equation x = ut + at2/2, i

{\displaystyle {\boldsymbol {x}}={\frac {({\boldsymbol {u}}+{\boldsymbol {v}})}{2}}{\mathit {t}}={\boldsymbol {\bar {v}}}{\mathit {t}}}{\boldsymbol {x}}={\frac {({\boldsymbol {u}}+{\boldsymbol {v}})}{2}}{\mathit {t}}={\boldsymbol {\bar {v}}}{\mathit {t}}.

{\displaystyle v^{2}={\boldsymbol {v}}\cdot {\boldsymbol {v}}=({\boldsymbol {u}}+{\boldsymbol {a}}t)\cdot ({\boldsymbol {u}}+{\boldsymbol {a}}t)=u^{2}+2t({\boldsymbol {a}}\cdot {\boldsymbol {u}})+a^{2}t^{2}}v^{2}={\boldsymbol {v}}\cdot {\boldsymbol {v}}=({\boldsymbol {u}}+{\boldsymbol {a}}t)\cdot ({\boldsymbol {u}}+{\boldsymbol {a}}t)=u^{2}+2t({\boldsymbol {a}}\cdot {\boldsymbol {u}})+a^{2}t^{2}

{\displaystyle (2{\boldsymbol {a}})\cdot {\boldsymbol {x}}=(2{\boldsymbol {a}})\cdot ({\boldsymbol {u}}t+{\frac {1}{2}}{\boldsymbol {a}}t^{2})=2t({\boldsymbol {a}}\cdot {\boldsymbol {u}})+a^{2}t^{2}=v^{2}-u^{2}}(2{\boldsymbol {a}})\cdot {\boldsymbol {x}}=(2{\boldsymbol {a}})\cdot ({\boldsymbol {u}}t+{\frac {1}{2}}{\boldsymbol {a}}t^{2})=2t({\boldsymbol {a}}\cdot {\boldsymbol {u}})+a^{2}t^{2}=v^{2}-u^{2}

{\displaystyle \therefore v^{2}=u^{2}+2({\boldsymbol {a}}\cdot {\boldsymbol {x}})}\therefore v^{2}=u^{2}+2({\boldsymbol {a}}\cdot {\boldsymbol {x}})

4 0
3 years ago
Other questions:
  • What best describes the speed of light waves and solids, liquids, and gases?
    12·3 answers
  • Why is motion a vector?
    9·2 answers
  • What is potassium 39.098
    11·1 answer
  • A 2.2 m -long wire carries a current of 7.2 A and is immersed within a uniform magnetic field B⃗ . When this wire lies along the
    15·1 answer
  • What is the work done by the electric force to move a 1 c charge from a to b?
    8·1 answer
  • An electrical appliance has a resistance of 40 Ω. When this electrical appliance is connected to a 220 V supply line, the curren
    14·1 answer
  • As shown in the figure below, Justin walks from the house to his truck on a windy day. He walks 20 m toward
    5·1 answer
  • Will the temperature of a plastic or wooden spoon be more than the temperature of a metal spoon if you put both of these in a cu
    5·2 answers
  • What is the speed of a car that travels a distance of 60 meters in a time of 10 seconds
    5·1 answer
  • Savanna regions developed during the Triassic period.
    8·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!