Answer : The pH will be, 3.2
Explanation :
As we known that the value of solubility constant of ferric hydroxide at
is, 
Amount or solubility of iron consumed = (1.800 - 0.3) mg/L = 1.5 mg/L
The given solubility of iron convert from mg/L to mol/L.

The chemical reaction will be:

The expression of solubility constant will be:
![K_{sp}=[Fe^{3+}]\times [3OH^-]^3](https://tex.z-dn.net/?f=K_%7Bsp%7D%3D%5BFe%5E%7B3%2B%7D%5D%5Ctimes%20%5B3OH%5E-%5D%5E3)
Now put all the given values in this expression, we get the concentration of hydroxide ion.
![2.79\times 10^{-39}=(2.7\times 10^{-7})\times [3OH^-]^3](https://tex.z-dn.net/?f=2.79%5Ctimes%2010%5E%7B-39%7D%3D%282.7%5Ctimes%2010%5E%7B-7%7D%29%5Ctimes%20%5B3OH%5E-%5D%5E3)
![[OH^-]=1.5\times 10^{-11}M](https://tex.z-dn.net/?f=%5BOH%5E-%5D%3D1.5%5Ctimes%2010%5E%7B-11%7DM)
Now we have to calculate the pOH.
![pOH=-\log [OH^-]](https://tex.z-dn.net/?f=pOH%3D-%5Clog%20%5BOH%5E-%5D)


Now we have to calculate the pH.

Therefore, the pH will be, 3.2
Answer:
Wavelength of radiation is 0.375×10⁻⁶ m
Explanation:
Given data:
Frequency of radiation = 8.0×10¹⁴ Hz
Wavelength of radiation = ?
Solution:
Frequency and wavelength of lights are inversely proportional to each other.
The wave of light having highest frequency have shortest wavelength and the light with the shortest frequency having highest wavelength.
Formula:
Speed of light = wavelength × frequency
c = λ × f
λ = c/f
This formula shows that both are inversely related to each other.
The speed of light is 3×10⁸ m/s
Frequency is taken in Hz.
It is the number of oscillations, wave of light make in one second.
Wavelength is designated as "λ" and it is the measured in meter. It is the distance between the two crust of two trough.
Now we will put the values in formula.
λ = 3×10⁸ m/s / 8.0×10¹⁴ Hz
λ = 0.375×10⁻⁶ m
The element in group 1 of the periodic table that had the smallest atomic radius is A. Lithium.
Use the formula E=hv, h=plancks constant and v=frequency
use the formula c=v*lambda to find v
the answer will be 2.88*10^-23J