Answer:

Explanation:
Hello there!
In this case, when considering weak acids which have an associated percent dissociation, we first need to set up the ionization reaction and the equilibrium expression:
![HA\rightleftharpoons H^++A^-\\\\Ka=\frac{[H^+][A^-]}{[HA]}](https://tex.z-dn.net/?f=HA%5Crightleftharpoons%20H%5E%2B%2BA%5E-%5C%5C%5C%5CKa%3D%5Cfrac%7B%5BH%5E%2B%5D%5BA%5E-%5D%7D%7B%5BHA%5D%7D)
Now, by introducing x as the reaction extent which also represents the concentration of both H+ and A-, we have:
![Ka=\frac{x^2}{[HA]_0-x} =10^{-4.74}=1.82x10^{-5}](https://tex.z-dn.net/?f=Ka%3D%5Cfrac%7Bx%5E2%7D%7B%5BHA%5D_0-x%7D%20%3D10%5E%7B-4.74%7D%3D1.82x10%5E%7B-5%7D)
Thus, it is possible to find x given the pH as shown below:

So that we can calculate the initial concentration of the acid:
![\frac{(1.82x10^{-5})^2}{[HA]_0-1.82x10^{-5}} =1.82x10^{-5}\\\\\frac{1.82x10^{-5}}{[HA]_0-1.82x10^{-5}} =1\\\\](https://tex.z-dn.net/?f=%5Cfrac%7B%281.82x10%5E%7B-5%7D%29%5E2%7D%7B%5BHA%5D_0-1.82x10%5E%7B-5%7D%7D%20%3D1.82x10%5E%7B-5%7D%5C%5C%5C%5C%5Cfrac%7B1.82x10%5E%7B-5%7D%7D%7B%5BHA%5D_0-1.82x10%5E%7B-5%7D%7D%20%3D1%5C%5C%5C%5C)
![[HA]_0=3.64x10^{-5}M](https://tex.z-dn.net/?f=%5BHA%5D_0%3D3.64x10%5E%7B-5%7DM)
Therefore, the percent dissociation turns out to be:
![\% diss=\frac{x}{[HA]_0}*100\% \\\\\% diss=\frac{1.82x10^{-5}M}{3.64x10^{-5}M}*100\% \\\\\% diss = 50\%](https://tex.z-dn.net/?f=%5C%25%20diss%3D%5Cfrac%7Bx%7D%7B%5BHA%5D_0%7D%2A100%5C%25%20%5C%5C%5C%5C%5C%25%20diss%3D%5Cfrac%7B1.82x10%5E%7B-5%7DM%7D%7B3.64x10%5E%7B-5%7DM%7D%2A100%5C%25%20%5C%5C%5C%5C%5C%25%20diss%20%3D%2050%5C%25)
Best regards!
Answer:
Option A:
Zn(s) + Cu^(2+) (aq) → Cu(s) + Zn^(2+)(aq)
Explanation:
The half reactions given are:
Zn(s) → Zn^(2+)(aq) + 2e^(-)
Cu^(2+) (aq) + 2e^(-) → Cu(s)
From the given half reactions, we can see that in the first one, Zn undergoes oxidation to produce Zn^(2+).
While in the second half reaction, Cu^(2+) is reduced to Cu.
Thus, for the overall reaction, we will add both half reactions to get;
Zn(s) + Cu^(2+) (aq) + 2e^(-) → Cu(s) + Zn^(2+)(aq) + 2e^(-)
2e^(-) will cancel out to give us;
Zn(s) + Cu^(2+) (aq) → Cu(s) + Zn^(2+)(aq)
Answer: V = 5.1 L
Explanation: To find the new volume, we will use the formula of Combined Gas Law and derive V2. We also need to convert first the temperature in Kelvin and convert torr to atm ( 1 atm = 760 torrs ).
Solution attached.
Answer:
66.67%
Explanation:
From the given information:
mass of cyclohexane = 2.9949 grams
density of cyclohexane = 0.779 g/mL
Recall that:
Density = mass/volume
∴
Volume = mass/density
So, the volume of cyclohexane = 2.9949 g/ 0.779 g/mL
= 3.8445 mL
Also,
mass of propylbenzene = 1.6575 grams
density of propylbenzene = 0.862 g/mL
Volume of propylbenzene = 1.6575 g/ 0.862 g/mL
= 1.9229 mL
The volume % composition of cyclohexane from the mixture is:



= 66.67%