4(x - 2) + 6 = 2(5x - 6) <em>use distributive property</em>
(4)(x) + (4)(-2) + 6 = (2)(5x) + (2)(-6)
4x - 8 + 6 = 10x - 12
4x - 2 = 10x - 12 <em>add 2 to both sides</em>
4x = 10x - 10 <em>subtract 10 from both sides</em>
-6x = -10 <em>divide both sides by (-6)</em>
x = 10/6
<h3>x = 5/3</h3>
Answer:
y = -2x^2 - 4x - 1
Step-by-step explanation:
We can see that the graph passes through (-2, -1), (-1, 1) and (0, -1).
Let's solve
ax^2 + bx + c = y
a(-2)^2 + b(-2) + c = -1
4a - 2b + c = -1
a(-1)^2 + b(-1) + c = 1
a - b + c = 1
a0^2 + b0 + c = -1
c = -1
we got c = -1 so we input it into the other 2
4a - 2b - 1 = -1
4a - 2b = 0
2a - b = 0
2a = b
a - b - 1 = 1
a - b = 2
a = b + 2
Let's input b = 2a
a = 2a + 2
-a = 2
a = -2
b = 2a = 2*(-2) = -4
c = -1
y = -2x^2 - 4x - 1
Answer:
300 feet
Step-by-step explanation:
Answer:

General Formulas and Concepts:
<u>Calculus</u>
Differentiation
- Derivatives
- Derivative Notation
Derivative Property [Multiplied Constant]:
Basic Power Rule:
- f(x) = cxⁿ
- f’(x) = c·nxⁿ⁻¹
Derivative Rule [Product Rule]: ![\displaystyle \frac{d}{dx} [f(x)g(x)]=f'(x)g(x) + g'(x)f(x)](https://tex.z-dn.net/?f=%5Cdisplaystyle%20%5Cfrac%7Bd%7D%7Bdx%7D%20%5Bf%28x%29g%28x%29%5D%3Df%27%28x%29g%28x%29%20%2B%20g%27%28x%29f%28x%29)
Step-by-step explanation:
<u>Step 1: Define</u>
<em>Identify</em>

<u>Step 2: Differentiate</u>
- [Function] Derivative Rule [Product Rule]:
![\displaystyle f'(x) = \frac{d}{dx}[9x^{10}] \tan^{-1}(x) + 9x^{10} \frac{d}{dx}[\tan^{-1}(x)]](https://tex.z-dn.net/?f=%5Cdisplaystyle%20f%27%28x%29%20%3D%20%5Cfrac%7Bd%7D%7Bdx%7D%5B9x%5E%7B10%7D%5D%20%5Ctan%5E%7B-1%7D%28x%29%20%2B%209x%5E%7B10%7D%20%5Cfrac%7Bd%7D%7Bdx%7D%5B%5Ctan%5E%7B-1%7D%28x%29%5D)
- Rewrite [Derivative Property - Multiplied Constant]:
![\displaystyle f'(x) = 9 \frac{d}{dx}[x^{10}] \tan^{-1}(x) + 9x^{10} \frac{d}{dx}[\tan^{-1}(x)]](https://tex.z-dn.net/?f=%5Cdisplaystyle%20f%27%28x%29%20%3D%209%20%5Cfrac%7Bd%7D%7Bdx%7D%5Bx%5E%7B10%7D%5D%20%5Ctan%5E%7B-1%7D%28x%29%20%2B%209x%5E%7B10%7D%20%5Cfrac%7Bd%7D%7Bdx%7D%5B%5Ctan%5E%7B-1%7D%28x%29%5D)
- Basic Power Rule:
![\displaystyle f'(x) = 90x^9 \tan^{-1}(x) + 9x^{10} \frac{d}{dx}[\tan^{-1}(x)]](https://tex.z-dn.net/?f=%5Cdisplaystyle%20f%27%28x%29%20%3D%2090x%5E9%20%5Ctan%5E%7B-1%7D%28x%29%20%2B%209x%5E%7B10%7D%20%5Cfrac%7Bd%7D%7Bdx%7D%5B%5Ctan%5E%7B-1%7D%28x%29%5D)
- Arctrig Derivative:

Topic: AP Calculus AB/BC (Calculus I/I + II)
Unit: Differentiation
Answer:
I'm not sure sorry I hope you get help