Answer:
a. 21 327 hot dogs/run
b. 70 runs/yr
c. 4 da/run
Step-by-step explanation:
Data:
Production rate (p) = 5000/da
Usage rate (u) = 260/da
Setup cost (S) = $66
Annual carrying cost (H) = $0.45/hot dog
Production days (d) = 294 da
Calculations:
a. Optimal run size
(i) Annual demand (D) = pd = (5000 hot dogs/1 day) × (294 days/1 yr)
= 1 470 000 hot dogs/yr
(ii) Economic run size



= 21 327 hot dogs/run
b. Number of runs per year
Runs = D/Q₀ = (1 470 000 hot dogs/1yr) × (1 run/21 327 hotdogs)
= 70 runs/yr
c. Length of a run
Length = Q₀/p = (21 327 hot dogs/1 run) × (1 da/5000 hot dogs)
= 4 da/run
Answer:what's the question?
Step-by-step explanation:
Answer:
a.Z(-2,1)
b.Z(1,1)
c.Z(-3,2)
Step-by-step explanation:
z(-2,3)
Imagine this point on a graph.
Translate it down two units :
the x stays -2, by going down the y decreases 2 so 3-2=1
Z(-2,1)
Translate Right three units : I'm assuming that we use the answer from the first translation
Z(-2,1)
The y doesn't change this time the x increases 3 since we're moving to the right.
Z(1,1)
Translate up 1 and left 4:
Z(1,1)
by moving up one we have Z(1,2) then by moving 4 to the left we get Z(-3,2)
Hope this helps :)
Your answer would be B.
Step-by-step explanation:
$93 / 12 = $7.75
The volume of the pyramid is 40
.
Explanation
The volume of the pyramid is determined by its base area and the height.
Given that
The base of the pyramid given in the problem is a rectangle
length of the base= 5 cm
breadth of the base=4 cm
base area A= length*breadth(area of rectangle)
=4*5=20 
height of the pyramid h=6 cm
volume of the pyramid=1/3 Ah
=1/3 *20*6=40