Answer:
0.55 mol Au₂S₃
Explanation:
Normally, we would need a balanced equation with masses, moles, and molar masses, but we can get by with a partial equation, if the S atoms are balanced.
1. Gather all the information in one place:
M_r: 34.08
Au₂S₃ + … ⟶ 3H₂S + …
m/g: 56
2. Calculate the moles of H₂S
Moles of H₂S = 56 g H₂S × (34.08 g H₂S/1 mol H₂S)
= 1.64 mol H₂S
3. Calculate the moles of Au₂S₃
The molar ratio is 1 mol Au₂S₃/3 mol H₂S.
Moles of Au₂S₃ = 1.64 mol H₂S × (1 mol Au₂S₃/3 mol H₂S)
= 0.55 mol Au₂S₃
From the reaction above, the rate is given by the following formula:
r = -(1/2) dA / dt = - dB / dt = (1/3) dC/ dt
Note that A and B charge is negative due to they decrease with time
given dA / dt = -0.110 M/s
hence dB / dt = -0.110 / 2 = -0.055 M/s
dC / dt = (-3/2) (-0.110) = 0.165 M/s
<span>conductor because it conducts the electrons</span><span />
1.)b
2.)true
3.)false
are the answer don't take me on my word