Answer:
15
Step-by-step explanation:
Sum means the result of an addition, so 20-5=15
I believe it is D. The lowest number on the y-axis is -4, and the highest is 0. -4<=y<=0
Skew lines are lines that are not pararell or perpendicular.
The only lines that fit this explanation are AE and GF
Hope this helps!
(a) ![[\frac{9}{2.6} - \frac{2.5^{2} }{2.5} ]^{2}](https://tex.z-dn.net/?f=%5B%5Cfrac%7B9%7D%7B2.6%7D%20%20-%20%5Cfrac%7B2.5%5E%7B2%7D%20%7D%7B2.5%7D%20%5D%5E%7B2%7D)
Answer:
![[\frac{9}{2.6} - \frac{2.5^{2} }{2.5} ]^{2}](https://tex.z-dn.net/?f=%5B%5Cfrac%7B9%7D%7B2.6%7D%20%20-%20%5Cfrac%7B2.5%5E%7B2%7D%20%7D%7B2.5%7D%20%5D%5E%7B2%7D)
= ![[\frac{9}{2.6} - \frac{2.5*2.5 }{2.5} ]^{2}](https://tex.z-dn.net/?f=%5B%5Cfrac%7B9%7D%7B2.6%7D%20%20-%20%5Cfrac%7B2.5%2A2.5%20%7D%7B2.5%7D%20%5D%5E%7B2%7D)
= ![[\frac{9}{2.6} - \frac{2.5}{1} ]^{2}](https://tex.z-dn.net/?f=%5B%5Cfrac%7B9%7D%7B2.6%7D%20%20-%20%5Cfrac%7B2.5%7D%7B1%7D%20%5D%5E%7B2%7D)
*canceling 2.5 in numerator and denominator*
![= [\frac{9-(2.5)(2.6)}{2.6} ]^2\\*Using L.C.M of 2.6 and 1 which comes out to be '2.6'= [\frac{9-(6.5)}{2.6} ]^2\\= [\frac{2.5}{2.6} ]^2\\*multiplying and dividing by '10'= [\frac{2.5*10}{2.6*10} ]^2\\= [\frac{25}{26} ]^2\\= \frac{25^2}{26^2}\\= \frac{625}{676}\\= 0.925](https://tex.z-dn.net/?f=%3D%20%5B%5Cfrac%7B9-%282.5%29%282.6%29%7D%7B2.6%7D%20%5D%5E2%5C%5C%3C%2Fp%3E%3Cp%3E%2AUsing%20L.C.M%20of%202.6%20and%201%20which%20comes%20out%20to%20be%20%272.6%27%3C%2Fp%3E%3Cp%3E%3D%20%5B%5Cfrac%7B9-%286.5%29%7D%7B2.6%7D%20%5D%5E2%5C%5C%3D%20%5B%5Cfrac%7B2.5%7D%7B2.6%7D%20%5D%5E2%5C%5C%3C%2Fp%3E%3Cp%3E%2Amultiplying%20and%20dividing%20by%20%2710%27%3C%2Fp%3E%3Cp%3E%3D%20%5B%5Cfrac%7B2.5%2A10%7D%7B2.6%2A10%7D%20%5D%5E2%5C%5C%3D%20%5B%5Cfrac%7B25%7D%7B26%7D%20%5D%5E2%5C%5C%3D%20%5Cfrac%7B25%5E2%7D%7B26%5E2%7D%5C%5C%3D%20%5Cfrac%7B625%7D%7B676%7D%5C%5C%3D%200.925)
Properties used:
Cancellation property of fractions
Least Common Multiplier(LCM)
The least or smallest common multiple of any two or more given natural numbers are termed as LCM. For example, LCM of 10, 15, and 20 is 60.
(b) ![[[\frac{3x^{a}y^{b}} {-3x^{a} y^{b} } ]^{3} ] ^{2}](https://tex.z-dn.net/?f=%20%5B%5B%5Cfrac%7B3x%5E%7Ba%7Dy%5E%7Bb%7D%7D%20%7B-3x%5E%7Ba%7D%20y%5E%7Bb%7D%20%7D%20%5D%5E%7B3%7D%20%20%20%20%5D%20%5E%7B2%7D%20)
Answer:
![[[\frac{3x^{a}y^{b}} {-3x^{a} y^{b} } ]^{3}] ^{2}\\](https://tex.z-dn.net/?f=%5B%5B%5Cfrac%7B3x%5E%7Ba%7Dy%5E%7Bb%7D%7D%20%7B-3x%5E%7Ba%7D%20y%5E%7Bb%7D%20%7D%20%5D%5E%7B3%7D%5D%20%5E%7B2%7D%5C%5C)
*using
*
*Again, using
*
![= \frac{3x^{2*3a}y^{2*3b}} {-3x^{2*3a} y^{2*3b} } \\= (-1)\frac{3x^{6a}y^{6b}} {3x^{6a} y^{6b} }\\[\tex]*taking -1 common, denominator and numerator are equal*[tex]= -(1)\frac{1}{1}\\= -1](https://tex.z-dn.net/?f=%3D%20%5Cfrac%7B3x%5E%7B2%2A3a%7Dy%5E%7B2%2A3b%7D%7D%20%7B-3x%5E%7B2%2A3a%7D%20y%5E%7B2%2A3b%7D%20%7D%20%20%5C%5C%3D%20%28-1%29%5Cfrac%7B3x%5E%7B6a%7Dy%5E%7B6b%7D%7D%20%7B3x%5E%7B6a%7D%20y%5E%7B6b%7D%20%7D%5C%5C%5B%5Ctex%5D%3C%2Fp%3E%3Cp%3E%2Ataking%20-1%20common%2C%20denominator%20and%20numerator%20are%20equal%2A%3C%2Fp%3E%3Cp%3E%5Btex%5D%3D%20-%281%29%5Cfrac%7B1%7D%7B1%7D%5C%5C%3D%20-1)
Property used: 'Power of a power'
We can raise a power to a power
(x^2)4=(x⋅x)⋅(x⋅x)⋅(x⋅x)⋅(x⋅x)=x^8
This is called the power of a power property and says that to find a power of a power you just have to multiply the exponents.
Ask your self what is -2*?=23.
Then times that answer by 2.