Answer:
6.75m
Explanation:
To calculate the distance in this question, we can use the formula:
S = ut + 1/2at^2
Where; S = distance
u = initial velocity = 0m/s
t = 3s
a = 1.5m/s^2
Hence:
S = (0 × 3) + 1/2 (1.5 × 3 × 3)
S = 0 + 1/2 (13.5)
S = 13.5/2
S = 6.75
Therefore, the car will travel 6.75m in 3seconds.
Answer:
Length of the string = 0.24 m
Explanation:
The frequency (f) of vibration of stringed instruments is related to the Tension (T) in the spring by the relation
fₙ = (n/2L)√(T/μ)
where n = 1,2,3,4...
For third harmonic frequency, n = 3
L = length of the string = ?
T = tension in the string = 2.3 N
μ = linear density = 4.6 × 10⁻³ kg/m
f = frequency = 140 Hz
L = (n/2f)√(T/μ)
L = (3/(2×140))√(2.3/0.0046) = 0.40 m
Answer:
The heat flux between the surface of the pond and the surrounding air is<em> 60 W/</em>
<em> </em>
Explanation:
Heat flux is the rate at which heat energy moves across a surface, it is the heat transferred per unit area of the surface. This can be calculated using the expression in equation 1;
q = Q/A ...............................1
since we are working with the convectional heat transfer coefficient equation 1 become;
q = h (
) ........................2
where q is the heat flux;
Q is the heat energy that will be transferred;
h is the convectional heat coefficient = 20 W/
.K;
is the surface temperature =
C 23°C + 273.15 = 296.15 K;
is the surrounding temperature =
C = 20°C + 273.15 = 293.15 K;
The values are substituted into equation 2;
q = 20 W/
.K ( 296.15 K - 293.15 K)
q = 20 W/
.K ( 3 K)
q = 60 W/
Therefore the heat flux between the surface of the pond and the surrounding air is 60 W/
According to the USDA, 40% of our food worth $161 billion is not even harvested, lost in processing, thrown away in restaurants and homes or ended up rotting in America’s landfills. It is also reported that 50% of the produce is never consumed.
Disparities in food distribution and availability imply that numerous communities and neighborhoods have very constrained access to fresh affordable food. Also, a significant number of those with a bounty of food choose to toss it rather than donate it.
Another type of food waste comes from produce discarded by millions of backyard cultivators due to their gardens producing far more fruits and vegetables than they might use, preserve or give to friends and neighbours.