Answer:
Explanation:
Given
mass of object is m
Mass of planet is M
radius of planet is R
Total Energy associated with mass m at a height h above planet is Gravitational Potential Energy which is given by

When it falls on earth with some velocity v
=Kinetic Energy+Potential Energy

As Energy is conserved therefore




Answer:
part (a) 
Part (b) 
Explanation:
Given,
- Mass of the larger disk =

- Mass of the smaller disk =

- Radius of the larger disk =

- Radius of the smaller disk =

- Mass of the block = M = 1.60 kg
Both the disks are welded together, therefore total moment of inertia of the both disks are the summation of the individual moment of inertia of the disks.

part (a)
Given that a block of mass m which is hanging with the smaller disk,
Let 'T' be 'a' be the tension in the string and acceleration of the block.
From the free body diagram of the smaller block,

From the pulley,

From the equation (1) and (2),

part (b)
Above expression for the acceleration of the block is only depended on the radius of the pulley.
Radius of the larger pulley = 
Let
be the acceleration of the block while connecting to the larger pulley.
Answer:
The size of an object is directly proportional to the gravity
Explanation:
The size of an object has significant impact on the gravity exerted by such a body.
The more massive a body is, the larger the gravity it exerts.
The reason for this is because of the newton's law of universal gravitation.
- It states that "the gravitational force between two bodies is directly proportional to the product of their masses and inversely proportional to the square of the distances between them".
- As such, gravity is directly proportional to mass
Answer:
24.3KW
Explanation:
A)The kinetic energy is changing, the potential energy is changing and the chemical energy in form of fuel powering the engine also is changing
The kinetic energy is increasing as the body gain speed, the potential energy also increases as the body gain height against gravity and the chemical energy in form of fuel decreases as the body burn the fuel to create a lifting force
B) The workdone by the lifting force = the change in kinetic energy + the change in potential energy
C)The time taken in seconds to do the work is the variable needed
D) average power generated by the lifting force = (change in kinetic energy + change in potential energy) / time taken in seconds
Average power = 1/2 * m(mass) (Vf-Vi)^2 + mg(hf-hi) /t where vf is final speed and vi is initial speed at rest = 0, similarly, hf = final height and hi = initial height.
Average power = 1/2*810*7^2 + 810*9.81*8.2/3.5s
Average power = (19845+65158.02)/3.5 = 24286.577 approx 24.3kW
Answer:
<u><em>A for certain.</em></u>
Explanation:
I got it right on the test, thanks to the other brainly answerer teresecaway. But knowing the answer doesnt help much if you dont know WHY. The reason WHY is as follows. At first you might think it would be B, because the downwards force is greater than the upwards force. I thought that maybe upwards force would also count as the table supporting it, but no, thats just structural inanimate solid table. The answer is A. gravity would have to be HIGHLY raised or somebody pressing down on it, to make it fall through the table.