1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Vitek1552 [10]
3 years ago
10

Which are the solutions of the quadratic equation?

Mathematics
1 answer:
yarga [219]3 years ago
6 0

\boxed{x_{1}=3}\\ \\ \boxed{x_{2}=-0.5}

<h2>Explanation:</h2>

Hello! Recall that if you want to get correct and good answers, you need to post your question in a clear way. However, I'll try to help you, so let's get started:

The quadratic equation isn't clear, so let's assume that equation is as follows:

2x^{2}-5x-3=0

A quadratic equation is given by the form:

ax^2+bx+c=0

To find the solutions, we can apply the quadratic formula:

x_{12}=\frac{-b \pm \sqrt{b^2-4ac}}{2a} \\ \\ \\ Here: \\ \\ a=2 \\ b=-5 \\ c=-3 \\ \\ \\ Substituting: \\ \\ x_{12}=\frac{-(-5) \pm \sqrt{(-5)^2-4(2)(-3)}}{2(2)} \\ \\ x_{12}=\frac{5 \pm \sqrt{25+24}}{4} \\ \\ Finally, \ we \ get \ two \ solutions: \\ \\ x_{1}=\frac{5+ \sqrt{25+24}}{4}=\frac{12}{4} \therefore \boxed{x_{1}=3} \\ \\ \\ x_{2}=\frac{5-\sqrt{25+24}}{4}=-\frac{2}{4} \therefore \boxed{x_{2}=-0.5}

<h2>Learn more:</h2>

Applications of Quadratic equation: brainly.com/question/10278062

#LearnWithBrainly

You might be interested in
A gift basket that contains jars of jam and packages of bread mix costs $45. There are 8 items in the basket. Jars of jam cost $
castortr0y [4]
The equation you had:
6x + 5y = 45

Solve for Y:
5y = (-6x)    + 45 divide by 5
y   = (-6/5)x + 9
y   = -1 1/5x +9


4 0
3 years ago
Read 2 more answers
How do I fill out this Table?
kap26 [50]

Answer:

Step-by-step explanation:

3 0
3 years ago
I need #1 done (show work) will give brainliest
allochka39001 [22]

Step-by-step explanation:

<u>Statement                                                        Reason                               </u>

∠5 and ∠7 are vertical angles                        Vertical angles theorem

m∠5 = m∠7                                                      Definition of vertical angles

m∠5 = -2(3x - 4), m∠7 = 3(x - 3) - 1                  Given

-2(3x - 4) = 3(x - 3) - 1                                       Substitution property of equality

-6x + 8 = 3x - 9 - 1                                            Distributive property

3x + 6x = 8 + 10                                               Addition property

9x = 18                                                              Addition property

x = 18/9                                                             Division property

x = 2                                                                  Proved

6 0
2 years ago
Help me please..... :))
Vitek1552 [10]
I hope this helps...

6 0
2 years ago
What is the answer <br> simplify 2(5x+3)-2(2x-3)
Pavel [41]

Answer:Use this PEMDAS to solve

Step-by-step explanation:

Parethiesis,Exponent,Multiplication,Division,Addition,and Subtraction.

ALWAYS DO P FIRST!!!!

4 0
2 years ago
Read 2 more answers
Other questions:
  • when you divide a whole number by a fraction with a numerator of 1, explain how you can find the quotient
    7·1 answer
  • 6 1/2 times 1 3/5 in fraction form
    11·2 answers
  • What is a reasonable estimate for the problem? 3 3/4 x -2/5
    9·2 answers
  • 9 9/25 in decimal form
    6·2 answers
  • What is the perimeter of the quadrilateral ABCD?
    14·1 answer
  • If $480 is shared in the ratio 4:3:5, the difference between the largest and the smallest share is
    9·1 answer
  • Write a paragraph to describe a time when you collaborate with a
    15·2 answers
  • Solve for the missing side length for the triangle below
    6·1 answer
  • Maya wants to show 28 as tens and ones . What are all the ways ?
    10·1 answer
  • From the below table determine the rate of change (which is the same as slope).
    12·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!