I believe it is b so I will just leave it at that
You should use your Microsoft account because this will sync to all your windows devices.
Answer:
If this is for fun. then may I take points for free. If not, then I will post my answer :)
Explanation:
Answer:
Encrypt this binary string into ciphertext: 110000. Include
in your answer the formula the decoder would use to decrypt your cipher text in the format (coded answer) x N mod (m) = Y
-Decrypt this ciphertext into a binary string: 106
Now that you can see how public and private keys work in a real-world scenario, please explains how it works for computers and internet communications in relation to cybersecurity.
Explanation: ……………..
Answer:
1. 2588672 bits
2. 4308992 bits
3. The larger the data size of the cache, the larger the area of memory you will need to "search" making the access time and performance slower than the a cache with a smaller data size.
Explanation:
1. Number of bits in the first cache
Using the formula: (2^index bits) * (valid bits + tag bits + (data bits * 2^offset bits))
total bits = 2^15 (1+14+(32*2^1)) = 2588672 bits
2. Number of bits in the Cache with 16 word blocks
Using the formula: (2^index bits) * (valid bits + tag bits + (data bits * 2^offset bits))
total bits = 2^13(1 +13+(32*2^4)) = 4308992 bits
3. Caches are used to help achieve good performance with slow main memories. However, due to architectural limitations of cache, larger data size of cache are not as effective than the smaller data size. A larger cache will have a lower miss rate and a higher delay. The larger the data size of the cache, the larger the area of memory you will need to "search" making the access time and performance slower than the a cache with a smaller data size.