Answer:
I think it is a or c hope this helps
Answer:
2.87 km/s
Explanation:
radius of planet, R = 1.74 x 10^6 m
Mass of planet, M = 7.35 x 10^22 kg
height, h = 2.55 x 10^6 m
G = 6.67 x 106-11 Nm^2/kg^2
Use teh formula for acceleration due to gravity


g = 1.62 m/s^2
initial velocity, u = ?, h = 2.55 x 10^6 m , final velocity, v = 0
Use third equation of motion

0 = v² - 2 x 1.62 x 2.55 x 10^6
v² = 8262000
v = 2874.37 m/s
v = 2.87 km/s
Thus, the initial speed should be 2.87 km/s.
Answer:
H vaporization = 100.0788 kJ/mol
Explanation:
Use clausius clapyron's adaptation for the calculation of Hvap as:

Where,
P₂ and P₁ are the pressure at Temperature T₂ and T₁ respectively.
R is the gas constant.
T₂ = 823°C
T₁ = 633°C
The conversion of T( °C) to T(K) is shown below:
T(K) = T( °C) + 273.15
So, the temperature,
T₂ = (823 + 273.15) K = 1096.15 K
T₁ = (633 + 273.15) K = 906.15 K
P₂ = 400.0 torr , P₁ = 40.0 torr
R = 8.314 J/K.mol
Applying in the formula to calculate heat of vaporization as:

Solving for heat of vaporization, we get:
H vaporization = 100078.823 J/mol
Also, 1 J = 10⁻³ kJ
So,
<u>H vaporization = 100.0788 kJ/mol</u>
They best represent a wave with zero energy and zero amplitude.
There are no measurements shown in a table that accompanies
this question having any amplitude or energy greater than zero.