<span>A motor produces less mechanical energy than the energy it uses because the motor looses some energy to heat.</span>
Answer:
D) 19.8 lbs
Explanation:
1kg in household measurement is equal to 35.274 ounces. 35.274*9=317.466 ounces.
1kg is also equal to 2.205 lbs. 9*2.205=19.8416
9 kg is also equal to 9000 grams, but grams are not a part of the household measurement system
a) 9000 grams. b) 9000 ounces. c) 19.8 ounces. d) 19.8 pounds.
This leaves us with 19.8 lbs
Answer:
The pressure exerted by the brick on the table is 18,933.3 N/m².
Explanation:
Given;
height of the brick, h = 0.1 m
density of the brick, ρ = 19,300 kg/m³
acceleration due to gravity, g = 9.81 m/s²
The pressure exerted by the brick on the table is calculated as;
P = ρgh
P = (19,300)(9.81)(0.1)
P = 18,933.3 N/m²
Therefore, the pressure exerted by the brick on the table is 18,933.3 N/m².
Answer:
29223.6J
Explanation:
Given parameters:
Mass of Piano = 852kg
Height of lifting = 3.5m
Unknown:
Gravitational potential energy = ?
Solution:
The gravitational potential energy of a body can be expressed as the energy due to the position of a body;
G.P.E = mgh
m is the mass
g is the acceleration due to gravity
h is the height
Now insert the given parameters and solve;
G.P.E = 852 x 9.8 x 3.5 = 29223.6J
Answer:


Explanation:
In order to calculate the equivalent spring constant we need to use the next formula:

Replacing the data provided:


Finally, to calculate the frequency of oscillation we use this:

Replacing m and k:
