Answer : Total molecules that will be needed to visualize a single egg will be 78500 molecules of dye.
Explanation : As a single egg cell has an approximately diameter of 100 μm.
We can use this formula to calculate area of the cell membrane;
A = π
;
We can take π as 3.14 and we get;
A = 3.14 X
Soving we get;
A = 7850 μ
Here we have to calculate the amount of dye molecules which will be needed for 10 fluorescent molecules / μ
but;
here 1 μ
= 7850 μ
dye molecules.
Therefore, 10 fluorescent molecules will need;
7850 X 10 = 78500 molecules of dye.
Therefore, the answer is 78500 molecules of dye.
Answer:
a
Explanation:
it is an electrolyte because of its strong polar chemical bond
16.94/18=.9411111
sig figs: 0.9411 mole of water
The same sample of gas at different temperatures shows that at low
temperatures, most molecules have speeds close to their average
speed.
<h3>
What does the Maxwell-Boltzmann distribution graph show?</h3>
Put simply, a Maxwell-Boltzmann distribution graph shows how the energy of gas particles varies within a system.
This is solely a measurement of the speeds of particles because kinetic energy is directly related to speed.
The Maxwell-Boltzmann distribution in chemistry is the subject of this article.
We will begin by describing how to read a graph of the Maxwell-Boltzmann distribution. This will involve taking a closer look at things like the typical energy and the most likely energy.
The graph will then be changed under various circumstances, such as when a catalyst is added or the temperature is raised.
The Maxwell-Boltzmann distribution, which we previously mentioned, is a probability function that depicts the distribution of energy among the particles of an ideal gas. (For more information on this topic, see Chemical Kinetics.)
To learn more about Maxwell distribution, refer
to brainly.com/question/24419453
#SPJ4