Answer:
Light as a wave: Light can be described (modeled) as an electromagnetic wave. In this model, a changing electric field creates a changing magnetic field. This changing magnetic field then creates a changing electric field and BOOM - you have light. ... So, Maxwell's equations do say that light is a wave.
Explanation:
Hope this helps
<em>All living organisms share several key characteristics or functions: order, sensitivity or response to the environment, reproduction, adaptation, growth and development, homeostasis, energy processing, and evolution. When viewed together, these characteristics serve to define life.</em>
<em>Hey</em><em> </em><em>Mate</em><em>!</em><em> </em><em>!</em><em> </em><em>!</em><em> </em><em>I</em><em> </em><em>hope</em><em> </em><em>this</em><em> </em><em>was</em><em> </em><em>helpful</em><em> </em><em>if</em><em> </em><em>yes</em><em> </em><em>please</em><em> </em><em>mark</em><em> </em><em>me</em><em> </em><em>brainliest</em><em>. </em>
What I think is the charge of nucleus is the proton+neutron
Answer:
6 carbon atoms
Explanation:
For instance, we can say that one molecule of glucose has 6 carbon atoms, or we can say, equivalently, that one mole of glucose has 6 moles of carbon atoms
4p, 3d, 3p, 3s, 2p, 2s and 1s orbitals may be occupied during de-excitation.<span />