1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Ymorist [56]
3 years ago
7

a sandwich shop sells 4 veggie subs for every 5 turkey subs. The shop sold 27 subs today how many of each kind di they sale

Mathematics
1 answer:
Sedaia [141]3 years ago
3 0

Answer:

15 Turkey Subs and 12 Veggie subs

Step-by-step explanation:

ok i understand i did a way which i wasn't supposed to but my head is really foggy atm and i jus need to tell you the answer asap cus you're prob in a online quiz or such.

all i did was multiply starting from 1 to 5. Then i realized that multiplying each number by 3 will give you a total of 27 subs. Ik its not convient but im certain its the right answer. Good luck

You might be interested in
A total of 638 tickets were sold for the school play. They were either adult tickets or student tickets. There were 62 fewer stu
UNO [17]
You need to subtract 638 and 62 and that will give 576
5 0
4 years ago
Help me please WITH NUMBER 7
Eva8 [605]
7a)
x - 10 + x - 11 + 3x + 6 = 180
5x -15 = 180
5x = 195
  x = 39

7b)
y = 3x + 6
y = 3(39) +6
y = 117 + 6
y = 123
6 0
3 years ago
If anyone knows about definite integrals for calculus then please I request help! I
kicyunya [14]

Answer:

\displaystyle \int\limits^9_5 {\frac{1}{x^3}e^\big{4x^{-2}}} \, dx = \frac{1}{8} \bigg( e^\Big{\frac{4}{25}} - e^\Big{\frac{4}{81}} \bigg)

General Formulas and Concepts:

<u>Calculus</u>

Differentiation

  • Derivatives
  • Derivative Notation

Derivative Property [Multiplied Constant]:                                                           \displaystyle \frac{d}{dx} [cf(x)] = c \cdot f'(x)

Basic Power Rule:

  1. f(x) = cxⁿ
  2. f’(x) = c·nxⁿ⁻¹

Integration

  • Integrals

Integration Rule [Fundamental Theorem of Calculus 1]:                                     \displaystyle \int\limits^b_a {f(x)} \, dx = F(b) - F(a)

Integration Property [Multiplied Constant]:                                                         \displaystyle \int {cf(x)} \, dx = c \int {f(x)} \, dx

U-Substitution

Step-by-step explanation:

<u>Step 1: Define</u>

<em>Identify</em>

\displaystyle \int\limits^9_5 {\frac{1}{x^3}e^\big{4x^{-2}}} \, dx

<u>Step 2: Integrate Pt. 1</u>

<em>Identify variables for u-substitution.</em>

  1. Set <em>u</em>:                                                                                                             \displaystyle u = 4x^{-2}
  2. [<em>u</em>] Differentiate [Basic Power Rule, Derivative Properties]:                       \displaystyle du = \frac{-8}{x^3} \ dx
  3. [Bounds] Switch:                                                                                           \displaystyle \left \{ {{x = 9 ,\ u = 4(9)^{-2} = \frac{4}{81}} \atop {x = 5 ,\ u = 4(5)^{-2} = \frac{4}{25}}} \right.

<u>Step 3: Integrate Pt. 2</u>

  1. [Integral] Rewrite [Integration Property - Multiplied Constant]:                 \displaystyle \int\limits^9_5 {\frac{1}{x^3}e^\big{4x^{-2}}} \, dx = \frac{-1}{8}\int\limits^9_5 {\frac{-8}{x^3}e^\big{4x^{-2}}} \, dx
  2. [Integral] U-Substitution:                                                                              \displaystyle \int\limits^9_5 {\frac{1}{x^3}e^\big{4x^{-2}}} \, dx = \frac{-1}{8}\int\limits^{\frac{4}{81}}_{\frac{4}{25}} {e^\big{u}} \, du
  3. [Integral] Exponential Integration:                                                               \displaystyle \int\limits^9_5 {\frac{1}{x^3}e^\big{4x^{-2}}} \, dx = \frac{-1}{8}(e^\big{u}) \bigg| \limits^{\frac{4}{81}}_{\frac{4}{25}}
  4. Evaluate [Integration Rule - Fundamental Theorem of Calculus 1]:           \displaystyle \int\limits^9_5 {\frac{1}{x^3}e^\big{4x^{-2}}} \, dx = \frac{-1}{8} \bigg( e^\Big{\frac{4}{81}} - e^\Big{\frac{4}{25}} \bigg)
  5. Simplify:                                                                                                         \displaystyle \int\limits^9_5 {\frac{1}{x^3}e^\big{4x^{-2}}} \, dx = \frac{1}{8} \bigg( e^\Big{\frac{4}{25}} - e^\Big{\frac{4}{81}} \bigg)

Topic: AP Calculus AB/BC (Calculus I/I + II)

Unit: Integration

4 0
3 years ago
Simplify<br> V100 + V36 - V150
motikmotik

Answer:

16  - 5 \sqrt{6}

Step-by-step explanation:

5 0
3 years ago
Find the 9th term of the geometric sequence 5, -25, 125, ...
arlik [135]

Answer:

Step-by-step explanation:

a = 5

r = -5

n = 9

t_9 = a r^(n - 1)

t_9 = (-1)^n*5 (-5) ^ 8

t_9 = (-1)^9 *  5 *  (-5) ^8

t_9 = -1 ( 1953125)

t_9 = - 1953125

6 0
3 years ago
Other questions:
  • you enclose a field using sections of fence with length of 15,20 and 25 meters estimate the area of the field
    6·1 answer
  • What is the sum of five and four ninths and seven and five ninths
    7·2 answers
  • Which equation represents the graph of the linear function?
    12·1 answer
  • Help with these question
    11·1 answer
  • What decimal is equivalent to 9/100
    8·2 answers
  • A jar contains 7 blue cubes,4 blue spheres, 5 green cubes, and 6 green spheres. If you select an object at random, what is the p
    5·2 answers
  • How many more years is the avearge life span of a alligator then a tiger
    15·2 answers
  • What is the area of the segment?
    11·1 answer
  • What is the slope of the line shown below?
    15·2 answers
  • What is the product of 6 and 7 square root 128 in simplest radical form
    9·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!