Answer:
11y is the exact value.
Step-by-step explanation:
Let X be a discrete binomial random variable.
Let p = 0.267 be the probability that a person does not cover his mouth when sneezing.
Let n = 18 be the number of independent tests.
Let x be the number of successes.
So, the probability that the 18 individuals, 8 do not cover their mouth after sneezing will be:
a) P (X = 8) = 18! / (8! * 10!) * ((0.267) ^ 8) * ((1-0.267) ^ (18-8)).
P (X = 8) = 0.0506.
b) The probability that between 18 individuals observed at random less than 6 does not cover their mouth is:
P (X = 5) + P (X = 4) + P (X = 3) + P (X = 2) + P (X = 1) + P (X = 0) = 0.6571.
c) If it was surprising, according to the previous calculation, the probability that less than 6 people out of 18 do not cover their mouths is 66%. Which means it's less likely that more than half of people will not cover their mouths when they sneeze.
Answer:
1) Fail to reject the Null hypothesis
2) We do not have sufficient evidence to support the claim that the mean distance students traveled to school from their current residence was different for males and females.
Step-by-step explanation:
A university administrator wants to test if there is a difference between the distance men and women travel to class from their current residence. So, the hypothesis would be:

The results of his tests are:
t-value = -1.05
p-value = 0.305
Degrees of freedom = df = 21
Based on this data we need to draw a conclusion about test. The significance level is not given, but the normally used levels of significance are 0.001, 0.005, 0.01 and 0.05
The rule of the thumb is:
- If p-value is equal to or less than the significance level, then we reject the null hypothesis
- If p-value is greater than the significance level, we fail to reject the null hypothesis.
No matter which significance level is used from the above mentioned significance levels, p-value will always be larger than it. Therefore, we fail to reject the null hypothesis.
Conclusion:
We do not have sufficient evidence to support the claim that the mean distance students traveled to school from their current residence was different for males and females.
For the first one, I will solve for t.
s + 2t = 6, first we isolate the t variable,
2t = -s + 6, divide both sides by 2,
t = -s/2 + 3, < There's your answer for 1!
Here's the second one,
3s - 2t = 2, subtract 3s from both sides,
-2t = 2 - 3s, divide both sides by -2,
t = -1 + 3s/2 < There's your second answer!
Whats the problem you need help with