1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
puteri [66]
3 years ago
14

What is the value of x? x−1/6=8 Enter your answer in the box in simplest form.

Mathematics
2 answers:
kykrilka [37]3 years ago
7 0

x = -52 Have a good one


erik [133]3 years ago
6 0

x - 1/6 = 8

x = 8 + 1/6

x = 8*6/1*6 + 1/6

x = 43/6

You might be interested in
Take different values for x and find the value of 3x+5.​
Eva8 [605]

Answer:

when x=1

3x+5.=3×1+5=8

when x=0

3x+5.=3×0+5=5

Step-by-step explanation:

when x=-1

3x+5.=3×-1+5=-3+5=2

4 0
2 years ago
Read 2 more answers
What is the value of the point on the number on the number line?
Ratling [72]

Answer:

4/6

mark me brainliest please

5 0
2 years ago
Imagine that you would like to purchase a $275,000 home. Using 20% as
vfiekz [6]

Answer:

The mortgage chosen is option A;

15-year mortgage term with a 3% interest rate because it has the lowest total amount paid over the loan term of $270,470

Step-by-step explanation:

The details of the home purchase are;

The price of the home = $275,000

The mode of purchase of the home = Mortgage

The percentage of the loan amount payed as down payment = 20%

The amount used as down payment for the loan = $55,000

The principal of the mortgage borrowed, P = The price of the house - The down payment

∴ P = $275,000 - 20/100 × $275,000 = $275,000 - $55,000 = $220,000

The principal of the mortgage, P = $220,000

The formula for the total amount paid which is the cost of the loan is given as follows;

Outstanding \ Loan \ Balance = \dfrac{P \cdot \left[\left(1+\dfrac{r}{12} \right)^n -  \left(1+\dfrac{r}{12} \right)^m \right] }{1 - \left(1+\dfrac{r}{12} \right)^n }

The formula for monthly payment on a mortgage, 'M', is given as follows;

M = \dfrac{P \cdot \left(\dfrac{r}{12} \right) \cdot \left(1+\dfrac{r}{12} \right)^n }{\left(1+\dfrac{r}{12} \right)^n - 1}

A. When the mortgage term, t = 15-years,

The interest rate, r = 3%

The number of months over which the loan is payed, n = 12·t

∴ n = 12 months/year × 15 years = 180 months

n = 180 months

The monthly payment, 'M', is given as follows;

M =

The total amount paid over the loan term = Cost of the mortgage

Therefore, we have;

220,000*0.05/12*((1 + 0.05/12)^360/( (1 + 0.05/12)^(360) - 1)

M = \dfrac{220,000 \cdot \left(\dfrac{0.03}{12} \right) \cdot \left(1+\dfrac{0.03}{12} \right)^{180} }{\left(1+\dfrac{0.03}{12} \right)^{180} - 1}  \approx 1,519.28

The minimum monthly payment for the loan, M ≈ $1,519.28

The total amount paid over loan term, A = n × M

∴ A ≈ 180 × $1,519.28 = $273,470

The total amount paid over loan term, A ≈ $270,470

B. When t = 20 year and r = 6%, we have;

n = 12 × 20 = 240

\therefore M = \dfrac{220,000 \cdot \left(\dfrac{0.06}{12} \right) \cdot \left(1+\dfrac{0.06}{12} \right)^{240} }{\left(1+\dfrac{0.06}{12} \right)^{240} - 1}  \approx 1,576.15

The total amount paid over loan term, A = 240 × $1,576.15 ≈ $378.276

The monthly payment, M = $1,576.15

C. When t = 30 year and r = 5%, we have;

n = 12 × 30 = 360

\therefore M = \dfrac{220,000 \cdot \left(\dfrac{0.05}{12} \right) \cdot \left(1+\dfrac{0.05}{12} \right)^{360} }{\left(1+\dfrac{0.05}{12} \right)^{360} - 1}  \approx 1,181.01

The total amount paid over loan term, A = 360 × $1,181.01 ≈ $425,163

The monthly payment, M ≈ $1,181.01

The mortgage to be chosen is the mortgage with the least total amount paid over the loan term so as to reduce the liability

Therefore;

The mortgage chosen is option A which is a 15-year mortgage term with a 3% interest rate;

The total amount paid over the loan term = $270,470

8 0
3 years ago
How do i work this out?
Karo-lina-s [1.5K]

She has 45% of the original amount left

<h3>Ratio and proportions</h3>

Fractions are written as a ratio of two integers

Given the following

Initial amount. = ∈4000


Amount given to her sister = 1/4 * 4000 = 1000

Amount given to her brother = 40% of 3000 = 1200

Amount left = 4000 - (1000+1200)

Amount left = ∈1800

Determine the percentage left

x * 4000 = 1800

x = 1800/4000

x = 0.45

x = 45%

Hence she has 45% of the original amount left

Learn more proportion here: brainly.com/question/19994681

#SPJ1

5 0
2 years ago
A total of 640 tickets were sold for the school play. They were either adult tickets or student tickets. There were 60 fewer stu
gtnhenbr [62]

Answer:

350 adult tickets were sold

Step-by-step explanation:

Let x represent the number of adult tickets sold.

Since there were 60 fewer student tickets sold than adult tickets, the number of student tickets sold can be represented by x - 60

Create an equation that sets up these terms equal to 640, then solve for x:

(x) + (x - 60) = 640

2x - 60 = 640

2x = 700

x = 350

So, 350 adult tickets were sold

6 0
3 years ago
Other questions:
  • 11. Britney wants to bake at most 0 loaves of bread for a bake sale.
    9·1 answer
  • The vertices of a triangle are A(5, –4), B(7, 0), and C(1, –2). If the triangle is a right triangle, which vertex is the right a
    6·1 answer
  • Which shows the prime factorization of 36?
    12·1 answer
  • Often, anomalous objects are known as _____, since on a scatter plot of the data, they lie far away from other data points.
    12·1 answer
  • If (x) = 5x -12 what is f(2)?
    8·1 answer
  • An event manager recorded the number of people in different age groups that attended a music concert.
    15·1 answer
  • What is the volume of a cube with 1/2 inch sides pls answer I’ll give brainliest if you answer fast
    7·2 answers
  • Raspberries are hannas favorite fruit. She can only buy one pins for 2.55$ how many pounds of raspberries can Hannah but for $12
    7·1 answer
  • Use the Empirical Rule. The mean speed of a sample of vehicles along a stretch of highway is 68 miles per​ hour, with a standard
    7·2 answers
  • A licensed nurse practitioner is instructed to give a patient 2100 milligrams of an antibiotic over a period of 36 hours. If the
    6·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!