Given statement is "What is the intersection of the given lines AE and DE?".
That gives us information that there are two lines named AE and DE which intersect each other. Now we have to find their intersection point.
If you see carefully the name of both lines AE and DE then you will find that; they have common letter "E" in their name.
That means point "E" lies on both lines.
We know that intersection point always lies on both lines.
Which proves that point "E" is the intersection point.
Hence choice "<u>B. Point E" </u>is the final answer.
Answer: 13
Step-by-step explanation:
Let the number that in thinking of be represented by x.
I multiply by 11 and add 22 will give the same answer as multiplying by 4 and adding 113. This.csn be firmed into an equation as:
(11 × x) + 22 = (4 × x) + 113
11x + 22 = 4x + 113
Collect like terms
11x - 4x = 113 - 22
7x = 91
x = 91/7
x = 13.
The number is 13
The height is 33.
Set up the equation like this,
1056 = 32 h
Solve the one step equation and get 33.
Hope this helps!
Y=24x+48
24 per hour (x) plus the 48 she already made would equal a total (y).
Answer:
52°
Step-by-step explanation:
<em>here's</em><em> </em><em>your</em><em> solution</em>
<em>=</em><em>></em><em> </em><em>we </em><em>know</em><em> </em><em>that</em><em> </em><em>the </em><em>measure</em><em> </em><em>of</em><em> </em><em>angle</em><em> of</em><em> </em><em>rectangle</em><em> </em><em>is </em><em> </em><em>9</em><em>0</em><em>°</em>
<em>=</em><em>></em><em> </em><em> </em><em>3</em><em>8</em><em>°</em><em> </em><em>+</em><em> </em><em>X </em><em> </em><em>=</em><em> </em><em>9</em><em>0</em><em>°</em>
<em>=</em><em>></em><em> </em><em>X </em><em>=</em><em> </em><em>9</em><em>0</em><em>°</em><em> </em><em>-</em><em> </em><em>3</em><em>8</em><em>°</em>
<em>=</em><em>></em><em> </em><em>X </em><em>=</em><em> </em><em>5</em><em>2</em><em>°</em>
<em> </em><em> </em><em> </em><em> </em><em> </em><em>hope</em><em> it</em><em> helps</em>