Answer:
Gay-Lussac’s law, because as the pressure increases, the temperature increases
Explanation:
First of all, we can notice that the volume of the tank is fixed: this means that the volume of the air inside is also fixed.
This means that in this situation we can apply Gay-Lussac's law, which states that:
"for a gas kept at constant volume, the pressure of the gas is proportional to the absolute temperature of the gas".
Mathematically:

where p is the pressure in Pascal and T is the temperature in Kelvin.
In this case, the tank is filled with air: this means that the pressure of the gas inside the tank increases. And therefore, according to Gay-Lussac's law, the temperature will increase proportionally, and this explains why the tank gets hot.
To find the change in centripetal acceleration, you should first look for the centripetal acceleration at the top of the hill and at the bottom of the hill.
The formula for centripetal acceleration is:
Centripetal Acceleration = v squared divided by r
where:
v = velocity, m/s
r= radium, m
assuming the velocity does not change:
at the top of the hill:
centripetal acceleration = (4.5 m/s^2) divided by 0.25 m
= 81 m/s^2
at the bottom of the hill:
centripetal acceleration = (4.5 m/s^2) divided by 1.25 m
= 16.2 m/s^2
to find the change in centripetal acceleration, take the difference of the two.
change in centripetal acceleration = centripetal acceleration at the top of the hill - centripetal acceleration at the bottom of the hill
= 81 m/s^2 - 16.2 m/s^2
= 64.8 m/s^2 or 65 m/s^2
According to the position vs time graph, the <em>average</em> <em>velocity</em> of the motorcycle is the change in position divided by the change in time. Also, note that the slope is linear and positive throughout the 5 hours, it doesn't change direction.
Therefore, we have
Avg velocity = change in direction/change in time
Avg velocity = (150km - 30km)/(5h - 0h)
Avg velocity = 24km/hr south.
Answer:
W = 0.060 J
v_2 = 0.18 m/s
Explanation:
solution:
for the spring:
W = 1/2*k*x_1^2 - 1/2*k*x_2^2
x_1 = -0.025 m and x_2 = 0
W = 1/2*k*x_1^2 = 1/2*(250 N/m)(-0.028m)^2
W = 0.060 J
the work-energy theorem,
W_tot = K_2 - K_1 = ΔK
with K = 1/2*m*v^2
v_2 = √2*W/m
v_2 = 0.18 m/s
Answer:
what.....................
i edited this answer
please mark me as brainlist