The answer to this question is "Buffeting". This is an unusual strong wind condition that resulted in the loss of vehicle control. This condition occurs in roads and bridges, across and along mountains that affected vehicles control. The drivers must be alert and put their full attention to overcome this condition.
Answer:
The speed of the car when load is dropped in it is 17.19 m/s.
Explanation:
It is given that,
Mass of the railroad car, m₁ = 16000 kg
Speed of the railroad car, v₁ = 23 m/s
Mass of additional load, m₂ = 5400 kg
The additional load is dropped onto the car. Let v will be its speed. On applying the conservation of momentum as :



v = 17.19 m/s
So, the speed of the car when load is dropped in it is 17.19 m/s. Hence, this is the required solution.
Answer:
Explanation:
The acceleration of the ball would be due to the downward force of gravity, 9.8m/s^2. In order to find the displacement given that interval of time, you have to use the corresponding kinematic formula:

The initial velocity was given, the time was given, and the acceleration was given. Therefore:


To find the required time given a desired final velocity, we can use:




Explanation:
what is the question please
Answer:
Explanation:
As the final Kinetic energy is zero or less than initial kinetic energy, the collision must be inelastic.
In Inelastic collision both the bodies must stick together as final velocity is zero for both the bodies.
To conserve the momentum, momentum associated before the collision of first must be equal and opposite to the momentum associated with the second ball.
i.e.