The fraction form of this is 40/3, decimal form is 13.3 infinite.
Use whichever form your teacher wants you to use. (Refer to the image for the steps)
F(x) = ln(x² - 12x)
The derivative is
![f'(x)= \frac{2x-12}{x^{2}-12x}](https://tex.z-dn.net/?f=f%27%28x%29%3D%20%5Cfrac%7B2x-12%7D%7Bx%5E%7B2%7D-12x%7D%20)
f(x) is undefined when x² - 12x = x(x - 12) = 0
That is, when x = 0 or x = 12.
Therefore the domain is (-∞, 0)∪(0,12)∪(12, ∞)
Answer:
The derivative is
![f'(x) = \frac{2x-12}{x^{2}-12x}](https://tex.z-dn.net/?f=f%27%28x%29%20%3D%20%20%5Cfrac%7B2x-12%7D%7Bx%5E%7B2%7D-12x%7D%20)
The domain is
(-∞, 0)∪(0, 12)∪(12,∞)
ANSWER
D. 25 feet
EXPLANATION
The height of the wall,h, the taut wire and the distance from the base of the pole to the point on the ground, formed a right triangle.
According to the Pythagoras Theorem, the sum of the length of the squares of the two shorter legs equals the square of the hypotenuse.
Let the hypotenuse ( the length of the ) taught wire be,l.
Then
![{l}^{2} = {h}^{2} + {b}^{2}](https://tex.z-dn.net/?f=%20%7Bl%7D%5E%7B2%7D%20%20%3D%20%20%7Bh%7D%5E%7B2%7D%20%20%2B%20%20%7Bb%7D%5E%7B2%7D%20)
![{l}^{2} = {20}^{2} + {15}^{2}](https://tex.z-dn.net/?f=%7Bl%7D%5E%7B2%7D%20%20%3D%20%20%7B20%7D%5E%7B2%7D%20%20%2B%20%20%7B15%7D%5E%7B2%7D%20)
![{l}^{2} = 400 + 225](https://tex.z-dn.net/?f=%7Bl%7D%5E%7B2%7D%20%20%3D%20%20400%20%2B%20225)
![{l}^{2} = 625](https://tex.z-dn.net/?f=%7Bl%7D%5E%7B2%7D%20%20%3D%20%20625)
![l= \sqrt{625} = 25ft](https://tex.z-dn.net/?f=l%3D%20%20%5Csqrt%7B625%7D%20%20%3D%2025ft)
Answer:
c. function g has A y intercept of (0,4)
The greatest common factor will be (x² – xy + y²).
<h3>Greatest common factor</h3>
This is a value or expression that can divide the given expressions without leaving a remainder.
Given the following expressions
x^3+^3 and x^2 - xy + y^2
Expand x^3+y^3
x^3+y^3 =(x + y)(x² – xy + y²).
Since (x² – xy + y²) is common to both expression, hence the greatest common factor will be (x² – xy + y²).
Learn more on GCF here: brainly.com/question/902408
#SPJ1