Answer:
Shawn's speed relative to Susan's speed = 10 mph
Resultant velocity = 82.32 mph
Explanation:
The given data :-
i) Susan driving in north and speed of Susan is ( v₁ ) = 53 mph.
ii) Shawn driving in east and speed of Shawn is ( v₂ ) = 63 mph.
iii) The speed of both Susan and Shawn is relative to earth.
iv) The angle between Susan in north and Shawn in east is 90°.
We have to find Shawn's speed relative to Susan's speed.
v₂₁ = v₂ - v₁ = 63 - 53 = 10 mph
Resultant velocity,

v = 82.32 mph
B. sent through the atmosphere
Answer:
1 cm⁻¹ =1.44K 1 ev = 1.16 10⁴ K
Explanation:
The relationship between temperature and thermal energy is
E = K T
The relationship of the speed of light
c =λ f = f / ν 1/λ= ν
The Planck equation is
E = h f
Let's start the transformations
c = f λ = f / ν
f = c ν
E = h f
E = h c ν
E = KT
h c ν = K T
T = h c ν / K =( h c / K) ν
Let's replace the constants
h = 6.63 10⁻³⁴ J s
c = 3 10⁸ m / s
K = 1.38 10⁻²³ J / K
v = 1 cm-1 (100 cm / 1 m) = 10² m-1
T = (6.63 10⁻³⁴ 3. 10⁸ / 1.38 10⁻²³) 1 10²
A = h c / K = 1,441 10⁻²
T = 1.44K
ν = 103 cm⁻¹ = 103 10² m
T = (6.63 10⁻³⁴ 3. 10⁸ / 1.38 10⁻²³) 103 10²
T = 148K
1 Rydberg = 1.097 10 7 m
As we saw at the beginning the λ=1 / v
T = (h c / K) 1 /λ
T = 1,441 10⁻² 1 / 1,097 10⁷
T = 1.3 10⁻⁹ K
E = 1Ev (1.6 10⁻¹⁹ J /1 eV) = 1.6 10⁻¹⁹ J
E = KT
T = E/K
T = 1.6 10⁻¹⁹ /1.38 10⁻²³
T = 1.16 10⁴ K
Newtons second law says that the acceleration of an object (produced by a net force) is directly proportional to that magnitude of the net force. E.g. F = ma
where F is the net force of an object, m is mass and a is acceleration.
For example, if an object had a large mass, there would have to be more force in order to move it than if it was lighter.
In a linear motion, if you pushed two objects, one slightly larger than the other, with the same force, the acceleration of the smaller object would be bigger than the larger one. So the motion (change in position over time), of the larger object would be seen as lesser than the smaller one (in a situation where both forces are equal).
Here we can say that there is no external torque on this system
So here we can say that angular momentum is conserved
so here we will have

now we have



similarly let the final distance is "r"
so now we have


now from above equation we have


so final distance is 0.04 m between them