
<span>the missing exponent is
-3</span>
We know that y=MX+c
here m=1 and c=-1
Answer:
The equation that represents the money he spent by the time he was on the trampoline is "total amount = 7 + 1.25*x" and on that day he spent 29 minutes on the trampoline.
Step-by-step explanation:
The question is incomplete, but we can assume that the problems wants us to determine an equation for the time in minutes that Raymond spent on the Super Bounce.
In order to write this equation we will attribute a variable to the amount of time Raymond spent on the trampoline, this will be called "x". There were two kinds of fees to ride the trampoline, the first one was a fixed fee of $7 while the second one was a variable fee of $ 1.25 per minnute spent playing. So we have:
total amount = 7 + 1.25*x
Since he spent a total of $43.25 on that day we have:
1.25*x + 7 = 43.25
1.25*x = 43.25 - 7
1.25*x = 36.25
x = 36.25/1.25 = 29 minutes
The equation that represents the money he spent by the time he was on the trampoline is "total amount = 7 + 1.25*x" and on that day he spent 29 minutes on the trampoline.
18 and 35. The numbers whose sum 53 are 18 and 35.
The key to solve this problem is using a system of equations.
There are two numbers whose sum is 53. This number can be represented as x and y. So:
x + y = 53
Three times the smaller number is equal to 19 more than the larger. Let's set x as the smaller number and y the larger number. So:
3x = 19 + y
Clear y in both equations and let's use the equalization method to solve for x:
y = 53 - x and y = 3x - 19
Then,
53 - x = 3x - 19
53 + 19 = 3x + x ---------> 3x + x = 53 + 19 -------> 4x = 72
x = 72/4 = 18
To find y, let's substitute x = 18 in the equation x + y = 53
18 + y = 53 --------> y = 53 - 18
y = 35
Answer: The value of 'h' is 3.
Step-by-step explanation: Given that the vertex form of a function is given by

We are to find the value of 'h' when the following function is converted to the vertex form.

From equation (ii), we have

Comparing it with the vertex form (i), we get

Thus, the value of 'h' is 3.