I'm not sure about the distance to the nearest star, but it's probably about 4 light-years (L-y).
1 L-y = 1.86 * 10E5 mi/sec * 3600 sec/hr * 24 hr/day * 365 day/yr
1 L-y = 5.9 *10E12 mi and 4 L-y = 2.3 *10E13 mi distance to star
2.3 * 10E13 mi / 900 mi/hr = 2.6 * 10E10 hr hours to star
2.6 * 10E10 hr / (24 hr/day) = 1.1 * 10E9 day days to star
1.1 * 10E9 day / 365 day/yr = 3 * 10E6 yr = 3 million years to star
Answer:
1.25 kgm²/sec
Explanation:
Disk inertia, Jd =
Jd = 1/2 * 3.7 * 0.40² = 0.2960 kgm²
Disk angular speed =
ωd = 0.1047 * 30 = 3.1416 rad/sec
Hollow cylinder inertia =
Jc = 3.7 * 0.40² = 0.592 kgm²
Initial Kinetic Energy of the disk
Ekd = 1/2 * Jd * ωd²
Ekd = 0.148 * 9.87
Ekd = 1.4607 joule
Ekd = (Jc + 1/2*Jd) * ω²
Final angular speed =
ω² = Ekd/(Jc+1/2*Jd)
ω² = 1.4607/(0.592+0.148)
ω² = 1.4607/0.74
ω² = 1.974
ω = √1.974
ω = 1.405 rad/sec
Final angular momentum =
L = (Jd+Jc) * ω
L = 0.888 * 1.405
L = 1.25 kgm²/sec
Answer:
true
Explanation:
for example assume you are setting in a moving bus and when someone see you from the ground you are in motion but for some who is with you in the bus you are not in motion.
The acceleration of the body is 2 m/s^2 while the deceleration is - 1.2 m/s^2.
<h3>
What is the acceleration?</h3>
Let us recall that the acceleration is the change in the speed of a body with time. We have been told that the body accelerates for 3s and then decelerates to 2s. This implies that the total time that the object spent in motion is 5 s.
Thus;
v = u + at
v = final velocity
u = initial velocity
a = acceleration
t = time taken
v - u/t = a
a = 6 - 0/3
= 2 m/s^2
Again;
v - u/t = a
a = 0 - 6/5
a = - 1.2m/s^2
Learn more about acceleration:brainly.com/question/12550364
#SPJ1
<h3 />
Answer:
4 N
Explanation:
mass = 2 kg
acceleration = 2 m/s^2
Force = mass * acceleration
= 2 *2
= 4 N