Answer:
Step-by-step explanation:
(29, 35) (43, 21)
(21 - 35)/(43 - 29) = -14/14 = -1
y - 35 = -(x - 29)
y - 35 = -x + 29
y = -x + 64
<em>The distance the length of a segment with endpoints Y(2, 8) and Z(-2, 5) is 5 units</em>
<h2>Explanation:</h2>
Endpoints of a Line segments are places where they end or stop. Line segments are named after their endpoints. In this case, those endpoints are Y and Z, so the line segment would be:
![\overline{YZ} \ or \ \overline{ZY}](https://tex.z-dn.net/?f=%5Coverline%7BYZ%7D%20%5C%20or%20%5C%20%5Coverline%7BZY%7D)
To find the length of this segment with endpoints Y(2, 8) and Z(-2, 5), let's use the Distance Formula:
![d=\sqrt{(x_{2}-x_{1})^2+(y_{2}-y_{1})^2}](https://tex.z-dn.net/?f=d%3D%5Csqrt%7B%28x_%7B2%7D-x_%7B1%7D%29%5E2%2B%28y_%7B2%7D-y_%7B1%7D%29%5E2%7D)
![Let's \ write: \\ \\ Y(x_{1},y_{1}) \rightarrow Y(2, 8) \\ \\ Z(x_{2},y_{2}) \rightarrow (-2, 5) \\ \\ \\ Substituting: \\ \\ d=\sqrt{(-2-2))^2+(5-8)}^2 \\ \\ d=\sqrt{(-4)^2+(-3)^2} \\ \\ d=\sqrt{16+9} \\ \\ d=\sqrt{25} \\ \\ \boxed{d=5}](https://tex.z-dn.net/?f=Let%27s%20%5C%20write%3A%20%5C%5C%20%5C%5C%20Y%28x_%7B1%7D%2Cy_%7B1%7D%29%20%5Crightarrow%20Y%282%2C%208%29%20%5C%5C%20%5C%5C%20Z%28x_%7B2%7D%2Cy_%7B2%7D%29%20%5Crightarrow%20%28-2%2C%205%29%20%5C%5C%20%5C%5C%20%5C%5C%20Substituting%3A%20%5C%5C%20%5C%5C%20d%3D%5Csqrt%7B%28-2-2%29%29%5E2%2B%285-8%29%7D%5E2%20%5C%5C%20%5C%5C%20d%3D%5Csqrt%7B%28-4%29%5E2%2B%28-3%29%5E2%7D%20%5C%5C%20%5C%5C%20d%3D%5Csqrt%7B16%2B9%7D%20%20%5C%5C%20%5C%5C%20d%3D%5Csqrt%7B25%7D%20%5C%5C%20%5C%5C%20%5Cboxed%7Bd%3D5%7D)
Finally, <em>the distance the length of a segment with endpoints Y(2, 8) and Z(-2, 5) is 5 units</em>
<h2>Learn more:</h2>
Distance Formula: brainly.com/question/10134840
#LearnWithBrainly
Answer:
4.472135955
Step-by-step explanation:
I used a Calculator
![\sqrt20](https://tex.z-dn.net/?f=%5Csqrt20)
Answer:
76 cents
Step-by-step explanation:
23 inches = 92 cents
1 inches = 92 ÷ 23
= 4 cents
19 inches = 19 × 4
= 76