Answer:
yes 100 greater
<h2>I HOPE THIS HELPS</h2>
Answer:
We'll have 8.0 moles Fe3O4 and 4.0 moles CO2
Explanation:
Step 1: data given
Number of moles Fe2O3 = 12.0 moles
Number of moles CO = 12.0 moles
Step 2: The balanced equation
3Fe2O3 +CO → 2Fe3O4 + CO2
Step 3: Calculate the limiting reactant
For 3 moles Fe2O3 we need 1 mol CO to produce 2 moles Fe3O4 and 1 mol CO2
Fe2O3 is the limiting reactant. It will completely be consumed (12.0 moles).
CO is in excess. There will react 12.0 / 3 = 4.0 moles
There will remain 12.0 - 4.0 = 8.0 moles
Step 4: Calculate moles products
For 3 moles Fe2O3 we need 1 mol CO to produce 2 moles Fe3O4 and 1 mol CO2
For 12.0 moles Fe2O3 we'll have 2/3 * 12.0 = 8.0 moles Fe3O4
For 12.0 moles Fe2O3 we'll have 12.0 / 3 = 4.0 moles CO2
We'll have 8.0 moles Fe3O4 and 4.0 moles CO2
Answer:
Ruthenium or Dubnium
Explanation:
<em>Ruthenium</em> after Ruthenia or <em>Dubnium</em> after Dubna, a place in Russia
Explanation:
Expression for the coefficient of thermal expansion is as follows.

where, V = initial volume
= Final volume - initial volume
= (712.6 - 873.6) 
= -161 
Now, we will calculate the change in temperature as follows.
= Final temperature - Initial temperature
= (10 + 273) K - (70 + 273) K
= 283 K - 343 K
= -60 K
Substituting these values into the equation as follows.

= 0.00307 
It is known that for non-ideal gases the value of alpha is 0.366% which is 0.00366 per Kelvin. As it is close to our result, hence the given sample of gas is a non-ideal gas.