Missing question: What is the rate constant for the reaction?
<span>[RS2](mol L-1) Rate (mol/(L·s))
0.150 0.0394
0.250 0.109
0.350 0.214
0.500 0.438</span>
Chemical reaction: 3RS₂ → 3R + 6S.
Compare second and fourth experiment, when concentration is doubled, rate of concentration is increaced by four. So rate is:
rate = k·[RS₂]².
k = 0,438 ÷ (0,500)².
k = 1,75 L/mol·s.
Wavelength= velocity/frequency
wavelength= (3.0 x 10^8m/s) / 7.5 x 10^12 Hz)
you can do the math
I am assuming u that 108 is 10^8 and the 1012 is 10^12
Answer:
The correct answer is - option D. photosynthesis.
Explanation:
It is shown by the study that most of the atmospheric oxygen comes from the photosynthesis by plants as oxygen is the byproduct of the photosynthesis. Photosynthesis is the process that uses light energy, carbon dioxide, and water to produce food or glucose/sugar and release oxygen as the byproduct.
Many scientists believe that oceanic phytoplankton that releases oxygen by the photosynthesis process makes 80 to 85% of the total oxygen of the atmospheric oxygen.
Answer:
A)
<u>4, 7, 4, 6</u>
B)
<u>12 moles</u>
Explanation:

__↑______↑
8.00 mol | 14.00 mol
________________

You can turn this into a system of variables which are solvable.
To do this, create variables for the coefficients of each compound in the reaction respectively.

Because to be balanced, the count of atoms in each element of the compound correspond to the coefficient of the variable in that compound so that the count of the left (reactant) side is set equal to the right (product) side.
a corresponds to the coefficient of the first compound, b corresponds to the coefficient of the second compound, c corresponds to the coefficient of the third compound, and d corresponds to the coefficient of the fourth compound.
(Reactant = Product)
Reactant: 1a [N] Product: 1c.
Reactant: 3a [H] Product: 2d.
Reactant: 2b [O] Product: 2c + 1d.
Thus the system is:
1a = 1c
3a = 2d
2b = 2c + 1d.
Then just use the substitution methods to solve.
Remember that a conjugate acid-base pair will differ only by one proton.
None of the options you listed are conjugate acid-base pairs as none of them differ only by one proton (or H⁺)
An example of a conjugate acid-base pair would be NH₃ and NH₄⁺NH₃ + H₂O --> NH₄⁺ + OH⁻NH3 is the base, and NH₄⁺ is the conjugate acid