Answer:
About 5 times faster.
Explanation:
Hello,
In this case, since the Arrhenius equation is considered for both the catalyzed reaction (1) and the uncatalized reaction (2), one determines the relationship between them as follows:

By replacing the corresponding values we obtain:

Such result means that the catalyzed reaction is about five times faster than the uncatalyzed reaction.
Best regards.
Answer:
0.35 atm
Explanation:
It seems the question is incomplete. But an internet search shows me these values for the question:
" At a certain temperature the vapor pressure of pure thiophene (C₄H₄S) is measured to be 0.60 atm. Suppose a solution is prepared by mixing 137. g of thiophene and 111. g of heptane (C₇H₁₆). Calculate the partial pressure of thiophene vapor above this solution. Be sure your answer has the correct number of significant digits. Note for advanced students: you may assume the solution is ideal."
Keep in mind that if the values in your question are different, your answer will be different too. <em>However the methodology will remain the same.</em>
First we <u>calculate the moles of thiophene and heptane</u>, using their molar mass:
- 137 g thiophene ÷ 84.14 g/mol = 1.63 moles thiophene
- 111 g heptane ÷ 100 g/mol = 1.11 moles heptane
Total number of moles = 1.63 + 1.11 = 2.74 moles
The<u> mole fraction of thiophene</u> is:
Finally, the <u>partial pressure of thiophene vapor is</u>:
Partial pressure = Mole Fraction * Vapor pressure of Pure Thiophene
- Partial Pressure = 0.59 * 0.60 atm
The graduated cylinder is used to measure the volume of KOH and H2SO4 when accurate volume measurement is not required.
In the laboratory certain graduated apparatus are used to measure liquids. These graduated apparatus used to measure liquids include;
- burette
- pipette
- measuring cylinder
- Erlenmeyer flask
Sometimes, we are not really looking for a strictly accurate volume of liquid and we can use a graduated cylinder to measure the volume of liquid in such cases.
However, when we need to have strictly accurate volume measurement, we need a pipet or a buret.
Learn more: brainly.com/question/15670537
<u>Answer:</u>
<em>The situation given here is imaginary such that the life of Rock has to be found using the half-life of the element lokium that has been found inside the rock. </em>
<u>Explanation:</u>
Half-life of any material is the amount of time taken by that particular material to decay. Now the amount of lokium found in rock can show after how many half-lives this amount has been left out.
The time elapsed will be log (L) atoms X half-life.