Even though two grams seemed to disappear or vanish, the law of conversation of mass still holding true. Mercuric oxide, when heated, forms a gas of mercury and oxygen. During the investigation, some gas could have escaped or evaporated.
Answer:
Explanation:
The volume and amount are constant, so we can use Gay-Lussac’s Law:
At constant volume, the pressure exerted by a gas is directly proportional to its temperature.
Data:
p₁ = 1520 Torr; T₁ = 27 °C
p₂ = ?; T₂ = 150 °C
Calculations:
(a) Convert the temperatures to kelvins
T₁ = ( 27 + 273.15) K = 300.15 K
T₂ = (150 + 273.15) K = 423.15 K
(b) Calculate the new pressure
(c) Convert the pressure to atmospheres
Answer:
volume
Explanation:
The volume of the two samples of water will be different because volume is the amount of space occupied by a body. It is dependent on the amount of materials it contains.
- The 50g sample will have a higher volume compared to the 10g sample.
- The boiling point and density are intensive properties and do not depend on the amount of matter present.
- Since both samples are from the same source, they will have the same color.
N₂ : limiting reactant
H₂ : excess reactant
<h3>Further e
xplanation</h3>
Given
mass of N₂ = 100 g
mass of H₂ = 100 g
Required
Limiting reactant
Excess reactant
Solution
Reaction
<em>N₂+3H₂⇒2NH₃</em>
mol N₂(MW=28 g/mol) :
mol H₂(MW= 2 g/mol) :
A method that can be used to find limiting reactants is to divide the number of moles of known substances by their respective coefficients, and small or exhausted reactans become a limiting reactants
From the equation, mol ratio N₂ : H₂ = 1 : 3, so :
N₂ becomes a limiting reactant (smaller ratio) and H₂ is the excess reactant