Explanation:
An Example of push as a force would be to push on a swing. The force moves the swing in a particular direction and the harder that you push the further the swing will go.
An example of pull as a force would be opening a door. ...
An example of pressure as a force is when you push down on a pile of grapes. is this what you mean
<span>If there isn't any force then the normal contact force will be
N=m*g=7.5*9.81=73.58N
which is 73.58-23=50.58N less
so, there the person must pull at 23 degree upward
break down the tension in two components, vertical and horizontal.
vertical tension= 50.58=T*sin23
T=50.58/sin23=129.45N</span>
Answer: Option B. R = (1/2)gt^2
Explanation:
S = R (horizontal distance)
V^2 = 2gS
V^2 = 2gR
R = V^2 / 2g
But V = gt
R = (gt)^2 / 2g
R = (g^2 x t^2) / 2g
R = gt^2 / 2
But t^2 = 2h/g
R = ( g x 2h/g) / 2
R = h
But h = (1/2)gt^2
R = h = (1/2)gt^2
Answer:
Part a)
P = 13.93 kW
Part b)
R = 8357.6 Cents
Explanation:
Part A)
heat required to melt the aluminium is given by

here we have



Since this is the amount of aluminium per hour
so power required to melt is given by



Since the efficiency is 85% so actual power required will be

Part B)
Total energy consumed by the furnace for 30 hours



now the total cost of energy consumption is given as



Explanation:
Given that,
A ball is tossed straight up with an initial speed of 30 m/s
We need to find the height it will go and the time it takes in the air.
At its maximum height, its final speed, v = 0 and it will move under the action of gravity. Using equation of motion :
v = u +at
Here, a = -g
v = u -gt
i.e. u = gt

So, the time for upward motion is 3.06 seconds. It means that it will in air for 3.06×2 = 6.12 seconds
Let d is the maximum distance covered by it.

Putting all values

Hence, it will go to a height of 45.91 m and it will in the air for 6.12 seconds.