1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
snow_tiger [21]
3 years ago
14

Property of a moving object equal to its mass times it velocity

Physics
1 answer:
Ludmilka [50]3 years ago
7 0

Answer:

Momentum

Explanation:

The property of a moving object having mass m and moving with velocity v is called its momentum. It is given by the mathematical form as follows :

p=m\times v

It is a vector quantity. Its SI unit of kg-m/s.

You might be interested in
URGENT <br> Find the total<br> equivalent<br> resistance for the<br> circuit.
Nesterboy [21]

Answer:

20 + 10 = 30 \\ 30and50 in \: parallel \\  =  \frac{50 \times 30}{50 + 30}  \\  =  \frac{1500}{80}  \\ 18.75 \\ 30nd40parallel \\  \frac{30 \times 40}{70}  \\  \frac{1200}{70}  = 17.143 \\ total = 18.75 + 17.143 = 35.893ohm \\ thank \: u

3 0
3 years ago
A 0. 060-kg tennis ball, moving with a speed of 5. 82 m/s , has a head-on collision with a 0. 090-kg ball initially moving in th
inn [45]

Final speed of the tennis ball, moving with a speed of 5. 82 m/s , has a head-on collision with a 0. 090-kg ball is 2.964 m/s.

<h3>What is conservation of momentum?</h3>

Momentum of an object is the force of speed of it in motion. Momentum of a moving body is the product of mass times velocity. By the law of conservation of momentum,

m_1u_1 + m_2u_2 = (m_1+m_2)v

Here, (m) is the mass, (u) is initial velocity before collision, v is final velocity after collision and (subscript 1, and 2) are used for body 1 and 2 respectively. Rewrite the formula for final velocity as,

v=\dfrac{m_1u_1 + m_2u_2}{(m_1+m_2)}

A 0. 060-kg tennis ball, moving with a speed of 5. 82 m/s, has a head-on collision with a 0. 090-kg ball, initially moving in the same direction at a speed of 3.44 m/s. Thus, the initial velocity of the second ball is,

v_{2f}=5.82+3.44+v_{1f}\\v_{2f}=2.38+v_{1f}

Let v1f is the final velocity of first ball. Thus, the initial velocity of the first ball is,

v_{1f}=\dfrac{(0.060)(5.82) + (0.090)(3.44-2.38)}{(0.060)+(0.090)}\\v_{1f}=2.964\rm\; m/s

Thus, final speed of the tennis ball, moving with a speed of 5. 82 m/s , has a head-on collision with a 0. 090-kg ball is 2.964 m/s.

Learn more about the conservation of momentum here;

brainly.com/question/7538238

#SPJ4

4 0
2 years ago
Students perform a set of experiments by placing a block of mass m against a spring, compressing the spring a distance x along a
Verizon [17]

Increasing the angle of inclination of the plane decreases the velocity of the block as it leaves the spring.

  • The statement that indicates how the relationship between <em>v</em> and <em>x</em> changes is;<u> As </u><u><em>x</em></u><u> increases, </u><u><em>v</em></u><u> increases, but the relationship is no longer linear and the values of </u><u><em>v</em></u><u> will be less for the same value of </u><u><em>x</em></u><u>.</u>

Reasons:

The energy given  to the block by the spring = \mathbf{0.5  \cdot k  \cdot x^2}

According to the principle of conservation of energy, we have;

On a flat plane, energy given to the block = 0.5  \cdot k  \cdot x^2 = kinetic energy of

block = 0.5  \cdot m  \cdot v^2

Therefore;

0.5·k·x² = 0.5·m·v²

Which gives;

x² ∝ v²

x ∝ v

On a plane inclined at an angle θ, we have;

The energy of the spring = \mathbf{0.5  \cdot k  \cdot x^2}

  • The force of the weight of the block on the string, F = m \cdot g  \cdot sin(\theta)

The energy given to the block = 0.5 \cdot k \cdot x^2 - m \cdot g  \cdot sin(\theta) = The kinetic energy of block as it leaves the spring = \mathbf{0.5  \cdot m  \cdot v^2}

Which gives;

0.5 \cdot k \cdot x^2 - m \cdot g  \cdot sin(\theta) = 0.5  \cdot m  \cdot v^2

Which is of the form;

a·x² - b = c·v²

a·x² + c·v² = b

Where;

a, b, and <em>c</em> are constants

The graph of the equation a·x² + c·v² = b  is an ellipse

Therefore;

  • As <em>x</em> increases, <em>v</em> increases, however, the value of <em>v</em> obtained will be lesser than the same value of <em>x</em> as when the block is on a flat plane.

<em>Please find attached a drawing related to the question obtained from a similar question online</em>

<em>The possible question options are;</em>

  • <em>As x increases, v increases, but the relationship is no longer linear and the values of v will be less for the same value of x</em>
  • <em>The relationship is no longer linear and v will be more for the same value of x</em>
  • <em>The relationship is still linear, with lesser value of v</em>
  • <em>The relationship is still linear, with higher value of v</em>
  • <em>The relationship is still linear, but vary inversely, such that as x increases, v decreases</em>

<em />

Learn more here:

brainly.com/question/9134528

6 0
2 years ago
A bowling ball is dropped from rest. what is the ball’s velocity after falling for 4 seconds?
muminat

Answer:

it would be 39.2 m/s

Explanation:

After one second, you're falling 9.8 m/s. After two seconds, you're falling 19.6 m/s, and so on.

4 0
3 years ago
Starting from Newton’s law of universal gravitation, show how to find the speed of the moon in its orbit from the earth-moon dis
WARRIOR [948]

Answer: 1010.92 m/s

Explanation:

According to Newton's law of universal gravitation:

F=G\frac{Mm}{r^{2}} (1)

Where:

F is the gravitational force between Earth and Moon

G=6.674(10)^{-11}\frac{m^{3}}{kgs^{2}} is the Gravitational Constant  

M=5.972(10)^{24} kg is the mass of the Earth

m=7.349(10)^{22} kg is the mass of the Moon

r=3.9(10)^{8} m is the distance between the Earth and Moon

Asuming the orbit of the Moon around the Earth is a circular orbit, the Earth exerts a centripetal force on the moon, which is equal to F:

F=m.a_{C} (2)

Where a_{C} is the centripetal acceleration given by:

a_{C}=\frac{V^{2}}{r} (3)  

Being V the orbital velocity of the moon

Making (1)=(2):

m.a_{C}=G\frac{Mm}{r^{2}} (4)

Simplifying:

a_{C}=G\frac{M}{r^{2}} (5)

Making (5)=(3):

\frac{V^{2}}{r}=G\frac{M}{r^{2}} (6)  

Finding V:

V=\sqrt{\frac{GM}{r}} (7)

V=\sqrt{\frac{(6.674(10)^{-11}\frac{m^{3}}{kgs^{2}})(5.972(10)^{24} kg)}{3.9(10)^{8} m}} (8)

Finally:

V=1010.92 m/s

5 0
3 years ago
Other questions:
  • Physics (Electricity)
    8·2 answers
  • Two charged balloons 2.1 * 10ȹ meters apart have a repulsive force of 1.3 * 10ȹ newtons. The charge on one balloon is 8.2 * 10
    6·2 answers
  • Melting butter is a physical change. Which best describes what is happening?
    8·1 answer
  • Steve and José drove José's car to the beach during spring break. The 495 kilometer drive took them 8 hours and 30 minutes. What
    5·1 answer
  • You have a working electrical parallel circuit with three light bulbs, then 1 bulb burns
    15·1 answer
  • What acceleration will you give to a 24.5 kg
    5·1 answer
  • How long did it take the shuttle shock to fall 12 meters
    5·1 answer
  • Use the scenario below for questions 4-7.
    11·1 answer
  • Why will a struck tuning fork sound louder when it is held against a table?.
    11·1 answer
  • Calculate the weight of a 6 kg pizza.
    6·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!