The choices for this question can be found elsewhere and as follows:
<span>(a) state a hypothesis
(b) list a procedure
(c) state the problem
(d) analyze the data
I think the correct answer from the choices listed is option C. </span><span>When designing an experiment, the first step is to state the problem because you cannot proceed to other parts without knowing the problem.</span>
Answer: Please see answer in explanation column.
Explanation:
Given that
v≈(331 + 0.60T)m/s
where Temperature, T = 14°C
v≈(331 + 0.60 x 14)m/s
v =331+ 8.4 = 339.4m/s
In our solvings, note that
f= frequency
λ=wavelength
L = length
v= speed of sound
a) Length of the pipe is calculated using the fundamental frequency formulae that
f=v/2L
Length = v/ 2f
= 339.4m/s/ 2 x 494Hz ( s^-1)= 0.3435m
b) wavelength of the fundamental standing wave in the pipe
L = nλ/2,
λ = 2L/ n
λ( wavelength )= 2 x 0.3435/ 1
= 0.687m
c) frequency of the fundamental standing wave in the pipe
F = v/ λ
= 339.4m/s/0.687m=
494.03s^-1 = 494 Hz
d) the frequency in the traveling sound wave produced in the outside air.
This is the same as the frequency in the open organ pipe = 494Hz
e)The wavelength of the travelling sound wave produced in the outside air is the same as the wavelength calculated in b above = 0.687m
f) To play D above middle c . the distance is given by
L =v/ 2 f
= 343/ 2 x 294
=0.583m
If a car crashes into another car like this, the wreck should go nowhere. Besides this being an unrealistic question, the physics of it would look like this:
Momentum before and after the collision is conserved.
Momentum before the collision:
p = m * v = 50000kg * 24m/s + 55000kg * 0m/s = 50000kg * 24m/s
Momentum after the collision:
p = m * v = (50000kg + 55000kg) * v
Setting both momenta equal:
50000kg * 24m/s = (50000kg + 55000kg) * v
Solving for the velocity v:
v = 50000kg * 24m/s/(50000kg + 55000kg) = 11,43m/s
Answer:
3.True. The magnitude of momentum is the same
Explanation:
Let's propose the solution of the problem
The initial moment is
p₀ = m v
The final moment
= m (-v)
p₀ = -
Now we can review the claims
1. False. We see that the moment module is the same, but its direction changes
2. False. The impulse is a vector
3.True. The magnitude of momentum is the same