Given :
The focal length of a concave mirror is 18 cm.
To Find :
The radius of curvature of the concave mirror.
Solution :
We know,

Therefore, the radius of curvature of concave mirror is 36 cm.
Hence, this is the required solution.
Answer:
L = - 1361.591 k Kgm/s
Explanation:
Given
mA = 55.2 Kg
vA = 3.45 m/s
rA = 6.00 m
mB = 62.4 Kg
vB = 4.23 m/s
rB = 3.00 m
mC = 72.1 Kg
vC = 4.75 m/s
rC = - 5.00 m
then we apply the equation
L = (mv x r)
⇒ LA = mA*vA x rA = 55.2 *(3.45 i)x(6 j) = (1142.64 k) Kgm/s
⇒ LB = mB*vB x rB = 62.4 *(4.23 j)x(3 i) = (- 791.856 k) Kgm/s
⇒ LC = mC*vC x rC = 72.1 *(- 4.75 j)x(- 5 i) = (- 1712.375 k) Kgm/s
Finally, the total counterclockwise angular momentum of the three joggers about the origin is
L = LA + LB + LC = (1142.64 - 791.856 -1712.375) k Kgm/s
L = - 1361.591 k Kgm/s