Using the normal distribution, it is found that a production worker has to make $542.64 a week to be in the top 30% of wage earners.
<h3>Normal Probability Distribution</h3>
In a normal distribution with mean
and standard deviation
, the z-score of a measure X is given by:

- It measures how many standard deviations the measure is from the mean.
- After finding the z-score, we look at the z-score table and find the p-value associated with this z-score, which is the percentile of X.
In this problem:
- The mean is of
.
- The standard deviation is of
.
- The lower bound of the top 30% is the 70th percentile, which is X when Z has a p-value of 0.7, so <u>X when Z = 0.84.</u>




A production worker has to make $542.64 a week to be in the top 30% of wage earners.
You can learn more about the normal distribution at brainly.com/question/24663213
Answer:
0.19
Step-by-step explanation:
The are three candidate running for president and we know that probability of winning for first candidate and the probability of winning for second candidate and we have to find the probability of winning for third candidate
P(C1)=0.37
P(C2)=0.44
P(C3)=?
We know that sum of probabilities is always 1. So,
P(C1)+P(C2)+P(C3)=1
0.37+0.44+P(C3)=1
P(C3)=1-0.37-0.44
P(C3)=0.19
Thus, the probability of winning for third candidate is 0.19.
Answer:
x= 10
Step-by-step explanation:
1/5 x -2/3 = 4/3
Add 2/3 to each side
1/5x -2/3 +2/3 = 4/3 +2/3
1/5x = 6/3
1/5x = 2
Multiply each side by 5
1/5x * 5 = 2*5
x = 10
Answer:
Its C
Step-by-step explanation:
Answer:
answer for given question is 108045