1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
VladimirAG [237]
3 years ago
6

Ryan has deposited $100 into a retirement account at the end of every month for 50 years. The interest rate on the account is 1.

5% compounded monthly. a) How much is in the account after 45 years? b) How much inte rest was earned over the 45 years?
Mathematics
1 answer:
Andre45 [30]3 years ago
4 0

Answer:

future payment is $77056.92

total interest is paid after 45 year is  $23056.42

Step-by-step explanation:

Given data

payment (P) = $100

No of installment (n) = 12

rate of interest ( r ) = 1.5 %  i.e. = 0.015

time period (t) = 45 years

to find out

future payment and interest after 45 year

solution

we know future payment formula i.e. given below

future payment = payment × (1+\frac{r}{n})^{nt} - 1) / (r/n)

now put all these value in equation

future payment = $ 100  × (1+\frac{0.015}{12})^{12*45} - 1) / (0.015/12)  

future payment = $ 77056.92

payment paid in 45 year @ $100 total money is paid is 45 × 12 × $100 i.e. = $54000

total interest = future payment  - money paid

total interest = $77056.42 - $54000

total interest = $23056.42

You might be interested in
Two friends mix blue paint and yellow paint to make batches of green paint, as shown in the tables. Jarrod Cups Blue Cups Yellow
tangare [24]
Jarrod:
 Cups Blue Cups Yellow 
          3             2
 Ian: 
 Cups Blue Cups Yellow
          5              2
 We have that their ratios are:
 Jarrod: 3/2
 Ian: 5/2
 Comparing both ratios:
 Jarrod uses 60% yellow paint and 40% blue paint.
 Ian uses 71.4% yellow paint and 28.4% blue paint.
 Answer: 
 Jarrod: 3/2 
 Ian: 5/2
7 0
3 years ago
Read 2 more answers
I need help with 3 and 4
frosja888 [35]

Answer:

Step-by-step explanation:

3) G

Step-by-step explanation:

Q(-1,-1) R(3,1) S(2,-4)

x+2 y+3 translation then rotation 180 (x,y) be (-x,-y)

Q -1+2 -1+3 (1,2) (-1,-2)

R 3+2 1+3 (5,4) (-5,-4)

S 2+2 -4+3 (4,-1)

4 0
3 years ago
NEEP HELP ASAP!!!!!!!!!!!!!!!!!!!!!
stealth61 [152]

Step-by-step explanation:

sin 25 = 15 / xz

xz = 15/ sin 25

xz = 35.49

tan w = 35.49 / 22

w =58.15

8 0
2 years ago
Please answer this question, i request
Jet001 [13]

{\large{\textsf{\textbf{\underline{\underline{Given :}}}}}}

\star  \:  \tt \cot  \theta = \dfrac{7}{8}

{\large{\textsf{\textbf{\underline{\underline{To \: Evaluate :}}}}}}

\star \:  \tt \dfrac{(1  +  \sin \theta)(1 - \sin \theta) }{(1 +  \cos \theta) (1  -  \cos \theta) }

{\large{\textsf{\textbf{\underline{\underline{Solution :}}}}}}

Consider a \triangle ABC right angled at C and \sf \angle \: B = \theta

Then,

‣ Base [B] = BC

‣ Perpendicular [P] = AC

‣ Hypotenuse [H] = AB

\therefore \tt \cot  \theta   =  \dfrac{Base}{ Perpendicular}  =  \dfrac{BC}{AC} = \dfrac{7}{8}

Let,

Base = 7k and Perpendicular = 8k, where k is any positive integer

In \triangle ABC, H² = B² + P² by Pythagoras theorem

\longrightarrow \tt {AB}^{2}  =   {BC}^{2}  +   {AC}^{2}

\longrightarrow \tt {AB}^{2}  =   {(7k)}^{2}  +   {(8k)}^{2}

\longrightarrow \tt {AB}^{2}  =   49{k}^{2}  +   64{k}^{2}

\longrightarrow \tt {AB}^{2}  =   113{k}^{2}

\longrightarrow \tt AB  =   \sqrt{113  {k}^{2} }

\longrightarrow \tt AB = \red{  \sqrt{113}  \:  k}

Calculating Sin \sf \theta

\longrightarrow  \tt \sin \theta = \dfrac{Perpendicular}{Hypotenuse}

\longrightarrow  \tt \sin \theta = \dfrac{AC}{AB}

\longrightarrow  \tt \sin \theta = \dfrac{8 \cancel{k}}{ \sqrt{113} \: \cancel{ k } }

\longrightarrow  \tt \sin \theta =  \purple{  \dfrac{8}{ \sqrt{113} } }

Calculating Cos \sf \theta

\longrightarrow  \tt \cos \theta = \dfrac{Base}{Hypotenuse}

\longrightarrow  \tt \cos \theta =  \dfrac{BC}{ AB}

\longrightarrow  \tt \cos \theta =  \dfrac{7 \cancel{k}}{ \sqrt{113} \:  \cancel{k } }

\longrightarrow  \tt \cos \theta =  \purple{ \dfrac{7}{ \sqrt{113} } }

<u>Solving the given expression</u><u> </u><u>:</u><u>-</u><u> </u>

\longrightarrow \:  \tt \dfrac{(1  +  \sin \theta)(1 - \sin \theta) }{(1 +  \cos \theta) (1  -  \cos \theta) }

Putting,

• Sin \sf \theta = \dfrac{8}{ \sqrt{113} }

• Cos \sf \theta = \dfrac{7}{ \sqrt{113} }

\longrightarrow \:  \tt \dfrac{ \bigg(1 +  \dfrac{8}{ \sqrt{133}} \bigg) \bigg(1 - \dfrac{8}{ \sqrt{133}} \bigg) }{\bigg(1 +  \dfrac{7}{ \sqrt{133}} \bigg) \bigg(1 - \dfrac{7}{ \sqrt{133}} \bigg)}

<u>Using</u><u> </u><u>(</u><u>a</u><u> </u><u>+</u><u> </u><u>b</u><u> </u><u>)</u><u> </u><u>(</u><u>a</u><u> </u><u>-</u><u> </u><u>b</u><u> </u><u>)</u><u> </u><u>=</u><u> </u><u>a²</u><u> </u><u>-</u><u> </u><u>b²</u>

\longrightarrow \:  \tt  \dfrac{ { \bigg(1 \bigg)}^{2}  -  { \bigg(  \dfrac{8}{ \sqrt{133} } \bigg)}^{2}   }{ { \bigg(1 \bigg)}^{2}  -  { \bigg(  \dfrac{7}{ \sqrt{133} } \bigg)}^{2}  }

\longrightarrow \:  \tt   \dfrac{1 -  \dfrac{64}{113} }{ 1 - \dfrac{49}{113} }

\longrightarrow \:  \tt   \dfrac{ \dfrac{113 - 64}{113} }{  \dfrac{113 - 49}{113} }

\longrightarrow \:  \tt { \dfrac  { \dfrac{49}{113} }{  \dfrac{64}{113} } }

\longrightarrow \:  \tt   { \dfrac{49}{113} }÷{  \dfrac{64}{113} }

\longrightarrow \:  \tt    \dfrac{49}{ \cancel{113}} \times     \dfrac{ \cancel{113}}{64}

\longrightarrow \:  \tt   \dfrac{49}{64}

\qquad  \:  \therefore  \:  \tt \dfrac{(1  +  \sin \theta)(1 - \sin \theta) }{(1 +  \cos \theta) (1  -  \cos \theta) }  =   \pink{\dfrac{49}{64} }

\begin{gathered} {\underline{\rule{300pt}{4pt}}} \end{gathered}

{\large{\textsf{\textbf{\underline{\underline{We \: know :}}}}}}

✧ Basic Formulas of Trigonometry is given by :-

\begin{gathered}\begin{gathered}\boxed { \begin{array}{c c} \\ \bigstar \:  \sf{ In \:a \:Right \:Angled \: Triangle :}  \\ \\ \sf {\star Sin \theta = \dfrac{Perpendicular}{Hypotenuse}} \\\\ \sf{ \star \cos \theta = \dfrac{ Base }{Hypotenuse}}\\\\ \sf{\star \tan \theta = \dfrac{Perpendicular}{Base}}\\\\ \sf{\star \cosec \theta = \dfrac{Hypotenuse}{Perpendicular}} \\\\ \sf{\star \sec \theta = \dfrac{Hypotenuse}{Base}}\\\\ \sf{\star \cot \theta = \dfrac{Base}{Perpendicular}} \end{array}}\\\end{gathered} \end{gathered}

{\large{\textsf{\textbf{\underline{\underline{Note :}}}}}}

✧ Figure in attachment

\begin{gathered} {\underline{\rule{200pt}{1pt}}} \end{gathered}

3 0
2 years ago
A cashier has 26 bills consisting of three times as many ones as fives, one less ten than fives, and the rest twenties. If the v
monitta
Let number of  fives = x then number of ones = 3x  and number of tens = x - 1

so we can create the equation 

x + 3x +  x-1 + y = 26  where y = number of twenties
so
5x + y = 27

also we have the equation 

5x + 3x + 10(x - 1) + 20y = 120

18x + 20y = 130..................................(1)
5x    + y    = 27     multiply  by -20:-
-100x - 20y = -540..............................(2)
Adding equation (1) and (2)
-82x = -410
x  = 5,  that is  5 fives

Now plug x = 5 into equation 1:-
18(5) + 20y = 130
20y =  40
y =  2 ,   that is 2 twenties

So the answer is   there are (3x) = 15 ones , 5  fives, 4 tens and 2 twenties
7 0
4 years ago
Other questions:
  • What is 122.5 divided by 49
    9·1 answer
  • 2 equations that have a solution of (3,6)
    13·1 answer
  • Find the slope of the line that passes through points (3,5) and (8,5)
    7·1 answer
  • Which phrase best describes the translation from the graph y = (x - 5)2 + 7 to the graph of y = (x + 1)2 – 2?
    14·2 answers
  • Solve -x/4&lt;7 thank u!
    6·1 answer
  • Convert 35.79 dollars to cent
    5·2 answers
  • What is yeet+yeet=<br> Please answer
    5·2 answers
  • Find the missing side. Round to the nearest tenth. (ITS DUE IN THE MORNING PLEASE HELP)
    14·1 answer
  • Can sb please help me
    15·2 answers
  • A 15 foot ladder is leaning against a wall of a house. The base of the ladder is pulled away from the wall at a rate of 2ft/sec.
    7·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!