The independent variable is the one we are changing in the experiment. As we change it, the dependent variable might also change.
C. the density of the rock because we are changing the density of the rock and seeing how all other variables change with regards to the density.
Answer:
i dont know what you're asking here. But if you're asking what it is then:
Explanation:
Aluminum Hydroxide + Hydrogen Chloride = Aluminum Chloride + Water
Al and Oh3: Aluminum Hydroxide
H and Cl: Hydrogen Chloride
Al and Cl3: Aluminum Chloride
H2O: water
btw the first letter of every element should be capitalized. While the second and theird are lowercased.
The correct answer is approximately 11.73 grams of sulfuric acid.
The theoretical yield of water from Al(OH)3 is lower than that of H₂SO₄. As a consequence, Al(OH)3 is the limiting reactant, H₂SO₄ is in excess.
The balanced equation is:
2Al(OH)₃ + 3H₂SO₄ ⇒ Al₂(SO₄)₃ + 6H₂O
Each mole of Al(OH)3 corresponds to 3/2 moles of H₂SO₄. The molecular mass of Al(OH)3 is 78.003 g/mol. There are 15/78.003 = 0.19230 moles of Al(OH)3 in the five grams of Al(OH)3 available. Al(OH)3 is in limiting, which means that all 0.19230 moles will be consumed. Accordingly, 0.19230 × 3/2 = 0.28845 moles of H₂SO₄ will be consumed.
The molar mass of H₂SO₄ is 98.706 g/mol. The mass of 0.28845 moles of H₂SO₄ is 0.28845 × 98.706 = 28.289 g
40 grams of sulfuric acid is available, out of which 28.289 grams is consumed. The remaining 40-28.289 = 11.711 g is in excess, which is closest to the first option, that is, 11.73 grams of H₂SO₄.
Answer:
Explanation:
what wheres the answer???