Three complete orders on each side of the m=0 order can be produced in addition to the m = 0 order.
The ruling separation is
d=1 / (470mm −1) = 2.1×10⁻³ mm
Diffraction lines occur at angles θ such that dsinθ=mλ, where λ is the wavelength and m is an integer.
Notice that for a given order, the line associated with a long wavelength is produced at a greater angle than the line associated with a shorter wavelength.
We take λ to be the longest wavelength in the visible spectrum (538nm) and find the greatest integer value of m such that θ is less than 90°.
That is, find the greatest integer value of m for which mλ<d.
since d / λ = 538×10⁻⁹m / 2.1×10 −6 m ≈ 3
that value is m=3.
There are three complete orders on each side of the m=0 order.
The second and third orders overlap.
Learn more about diffraction here : brainly.com/question/16749356
#SPJ4
When baking soda is mixed with vinegar, something new is formed. The mixture quickly foams up with carbon dioxide gas. If enough vinegar is used, all of the baking soda can be made to react and disappear into the vinegar solution.
I believe 212.5m, but I may be wrong, I’m a little rusty with moles
That would be C. Organelles
Answer:
The reaction rate becomes quadruple.
Explanation:
According to the law of mass action:-
The rate of the reaction is directly proportional to the active concentration of the reactant which each are raised to the experimentally determined coefficients which are known as orders. The rate is determined by the slowest step in the reaction mechanics.
Order of in the mass action law is the coefficient which is raised to the active concentration of the reactants. It is experimentally determined and can be zero, positive negative or fractional.
The order of the whole reaction is the sum of the order of each reactant which is raised to its power in the rate law.
Thus,
Given that:- The rate law is:-
![r=k[A_2][B_2]](https://tex.z-dn.net/?f=r%3Dk%5BA_2%5D%5BB_2%5D)
Now,
and ![[B'_2]=2[B_2]](https://tex.z-dn.net/?f=%5BB%27_2%5D%3D2%5BB_2%5D)
So, ![r'=k[A'_2][B'_2]=k\times 2[A_2]\times 2[B_2]=4\times k[A_2][B_2]=4r](https://tex.z-dn.net/?f=r%27%3Dk%5BA%27_2%5D%5BB%27_2%5D%3Dk%5Ctimes%202%5BA_2%5D%5Ctimes%202%5BB_2%5D%3D4%5Ctimes%20k%5BA_2%5D%5BB_2%5D%3D4r)
<u>The reaction rate becomes quadruple.</u>